Instructions for installation and operation

Compressed air refrigeration dryer

DRYPOINT® RA 20-960
Dear customer,
Thank you for deciding in favour of the DRYPOINT® RA 20-960 compressed-air refrigeration dryer. Please read these installation and operating instructions carefully before mounting and starting up the DRYPOINT® RA 20-960 and follow our directions. Perfect functioning of the DRYPOINT® RA 20-960 and thus reliable compressed-air drying can only be guaranteed when the provisions and notes stipulated here are strictly adhered to.
## Contents

1. Name plate 6
2. Safety instructions 6
2.1 Safety pictograms in accordance with DIN 4844 7
2.2 Signal words in accordance with ANSI 9
2.3 Overview of the safety instructions 9
3. Proper use 12
4. Exclusion from a field of application 12
5. Operating instructions in accordance with the 2014/68/EU Pressure Equipment Directive 13
6. Transport 14
7. Storage 14
8. Installation 15
8.1 Place of installation 15
8.2 Installation plan 16
8.3 Correction factors 17
8.4 Connection to the compressed-air system 18
8.5 Connection to the cooling-water network 18
8.6 Minimum cooling water requirements: 19
8.7 Electrical connections 20
8.8 Condensate drain 20
9. Start-up 21
9.1 Preliminary stages 21
9.2 Initial start-up 21
9.3 Shut down and restart 22
10. Technical data 24
10.1 Technical data DRYPOINT RA 20-110  1/230/50-60  24
10.2 Technical data DRYPOINT RA 135-960  1/230/50  25
10.3 Technical data DRYPOINT RA 330-960  3phase  3/400/50  26
10.4 Technical data DRYPOINT RA 20-330  1/115/60  27
10.5 Technical data DRYPOINT RA 135-960  1/230/60  28
10.6 Technical data DRYPOINT RA 330-960  3phase  3/460/60  29
11. Technical description 30
11.1 Control panel 30
11.2 Functional description 30
11.3 Flow chart (air-cooled) 32
11.4 Flow chart (water-cooled) 32
11.5 Refrigerating compressor 33
11.6 Condenser (air-cooled) 33
11.7 Condenser (water-cooled) 33
11.8 Cooling-water regulating valve 33
11.9 Filter dryer 33
11.10 Capillary tube 33
11.11 Aluminium heat exchanger 33
11.12 Hot-gas bypass valve 34
11.13 Refrigerant pressure switches LPS – HPS – PV
11.14 Safety temperature switch TS
11.15 Compressor crankcase heater (RA 330-960 3phase)
11.16 DMC 18 electronics (control unit compressed-air dryer)
11.16.1 Switching the dryer on
11.16.2 Switching the dryer off
11.16.3 Indication of the operating parameters
11.16.4 Indication of a service warning/service alarm
11.16.5 Operation of the potential-free failure/alarm contact
11.16.6 How to change operating parameters – SETUP menu
11.16.7 Selection of the BEKOMAT drain model
11.17 Electronically level-controlled BEKOMAT condensate drain
12 Maintenance, troubleshooting, spare parts and dismantling
12.1 Checks and maintenance
12.2 Troubleshooting
12.3 Recommended spare parts
12.4 Maintenance works at the refrigeration cycle
12.5 Dismantling the dryer
13 Appendices
13.1 Dryer dimensions
13.1.1 Dryer dimensions DRYPOINT RA 20-70
13.1.2 Dryer dimensions DRYPOINT RA 110-135
13.1.3 Dryer dimensions DRYPOINT RA 190-240
13.1.4 Dryer dimensions DRYPOINT RA 330-370
13.1.5 Dryer dimensions DRYPOINT RA 490-630
13.1.6 Dryer dimensions DRYPOINT RA 750-960
13.1.7 Dryer dimensions DRYPOINT RA 330-370 3 phase
13.1.8 Dryer dimensions DRYPOINT RA 490-630 3 phase
13.1.9 Dryer dimensions DRYPOINT RA 750-960 3 phase
13.2 Exploded diagrams
13.2.1 Components of the exploded diagrams
13.2.2 Exploded diagram DRYPOINT RA 20-35
13.2.3 Exploded diagram DRYPOINT RA 50-70
13.2.4 Exploded diagram DRYPOINT RA 110-135
13.2.5 Exploded diagram DRYPOINT RA 190-240
13.2.6 Exploded diagram DRYPOINT RA 330-370
13.2.7 Exploded diagram DRYPOINT RA 490-630
13.2.8 Exploded diagram DRYPOINT RA 750-960
13.2.9 Exploded diagram DRYPOINT RA 330-370 Water Cooled
13.2.10 Exploded diagram DRYPOINT RA 490-630 Water Cooled
13.2.11 Exploded diagram DRYPOINT RA 750-960 Water Cooled
13.2.12 Exploded diagram DRYPOINT RA 330-370 3phase
13.2.13 Exploded diagram DRYPOINT RA 490-630 3phase
13.2.14 Exploded diagram DRYPOINT RA 750-960 3phase
13.2.15 Exploded diagram DRYPOINT RA 330-370 3phase Water Cooled
13.2.16 Exploded diagram DRYPOINT RA 490-630 3phase Water Cooled
13.2.17 Exploded diagram DRYPOINT RA 750-960 3phase Water Cooled
13.3 Electric diagrams
13.3.1 Electric diagrams – list of components
13.3.2 Electric diagram DRYPOINT RA 20-135
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.3</td>
<td>Electric diagram DRYPOINT RA 190-240</td>
<td>78</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Electric diagram DRYPOINT RA 330-370</td>
<td>79</td>
</tr>
<tr>
<td>13.3.5</td>
<td>Electric diagram DRYPOINT RA 490-960</td>
<td>80</td>
</tr>
<tr>
<td>13.3.6</td>
<td>Electric diagram DRYPOINT RA 330-960 3phase Sheet 1/3</td>
<td>81</td>
</tr>
<tr>
<td>13.3.7</td>
<td>Electric diagram DRYPOINT RA 330-960 3phase Sheet 2/3</td>
<td>82</td>
</tr>
<tr>
<td>13.3.8</td>
<td>Electric diagram DRYPOINT RA 330-960 3phase Sheet 3/3</td>
<td>83</td>
</tr>
<tr>
<td>14</td>
<td>EC Declaration of Conformity</td>
<td>84</td>
</tr>
</tbody>
</table>
1 Name plate

The name plate is on the back of the dryer and comprises all primary data of the device. Always refer to these when contacting the manufacturer or the sales department.

All guarantee claims will expire in the event that the name plate is modified or removed.

The dryer model printed on the nameplate includes one or more suffixes that specify one or more features of dryer.

Explanation of 1st suffix for power supply requirements:

<table>
<thead>
<tr>
<th>1st SUFFIX</th>
<th>DESCRIPTION OF FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>1/230/50</td>
</tr>
<tr>
<td>-C</td>
<td>3/400/50</td>
</tr>
<tr>
<td>-P</td>
<td>1/115/60</td>
</tr>
<tr>
<td>-E</td>
<td>1/230/60</td>
</tr>
<tr>
<td>-R</td>
<td>3/460/60</td>
</tr>
<tr>
<td>-S</td>
<td>3/230/60 (with internal autotransformer)</td>
</tr>
<tr>
<td>-F</td>
<td>3/380/60 (with internal autotransformer)</td>
</tr>
<tr>
<td>-T</td>
<td>3/690/60 (with internal autotransformer)</td>
</tr>
</tbody>
</table>

Explanation of 2nd suffix for cooling requirements:

<table>
<thead>
<tr>
<th>2nd SUFFIX</th>
<th>DESCRIPTION OF FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ AC</td>
<td>Air cooled</td>
</tr>
<tr>
<td>/ WC</td>
<td>Fresh water cooled</td>
</tr>
<tr>
<td>/ SWC</td>
<td>Sea water cooled, tube bundle condenser</td>
</tr>
<tr>
<td>/ TBH</td>
<td>Fresh water cooled, tube bundle condenser</td>
</tr>
</tbody>
</table>

Explanation of (eventual) 3rd suffix for special features:

<table>
<thead>
<tr>
<th>3rd SUFFIX</th>
<th>DESCRIPTION OF FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-TAC</td>
<td>Anti corrosion treatment</td>
</tr>
<tr>
<td>-SP</td>
<td>Special feature</td>
</tr>
<tr>
<td>-OF</td>
<td>Dryer oil free</td>
</tr>
</tbody>
</table>

Examples:

DP RA960-R /AC → DRYPOINT RA960, 3/460/60, Air cooled
DP RA630-C /WC → DRYPOINT RA630 3/400/50, Water cooled
DP RA630 /WC -TAC → DRYPOINT RA630 1/230/50, Water cooled, Anti corrosion treatment

2 Safety instructions

Please check whether or not these instructions correspond to the device type.

Please adhere to all advice given in these operating instructions. They include essential information which must be observed during installation, operation and maintenance. Therefore, it must be ensured that these operating instructions are read by the fitter and the responsible operator / certified skilled personnel prior to installation, start-up and maintenance.

The operating instructions must be accessible at all times at the place of application of the DRYPOINT® RA 20-960 compressed-air refrigeration dryer.

In addition to these operating instructions, local and national regulations need to be observed, where required.

Ensure that operation of the DRYPOINT® RA 20-960 compressed-air refrigeration dryer only takes place within the permissible limit values indicated on the name plate. Any deviation from these limit values involves a risk for persons and for the material, and may result in malfunction or a breakdown.

After installing the device correctly and in accordance with the instructions in this manual, the dryer is ready to operate, further settings are not required. Operation is fully automatic and maintenance is limited to several examinations and cleaning measures which are described in the following chapters. This manual must be available at all times for future reference and is a constituent part of the dryer.

If you have any queries regarding these installation and operating instructions, please contact BEKO TECHNOLOGIES GMBH.
2.1 Safety pictograms in accordance with DIN 4844

- Observe operating instructions
- General danger symbol
- Supply voltage
- Danger: component or system under pressure
- Hot surfaces
- Non-breathable air
- Do not use water to extinguish the fire
- Do not operate with open cover (housing)
- Maintenance works or controlling measures must only be carried out by qualified personnel
- Do not smoke

**Note**

| Connection point compressed-air inlet |
| Connection point compressed-air outlet |
| Connection point condensate drain |

---

1 Certified skilled personnel are persons who are authorised by the manufacturer, with experience and technical training, who are well-grounded in the respective provisions and laws and capable of carrying out the required works and of identifying and avoiding any risks during the machine transport, installation, operation and maintenance.

Qualified and authorised operators are persons who are instructed by the manufacturer regarding the handling of the refrigeration system, with experience and technical training, and who are well-grounded in the respective provisions and laws.
Works can be carried out by the operator of the plant, provided that they are skilled accordingly\(^2\).

**NOTE:** Text that contains important specifications to be considered – does not refer to safety precautions.

The device was carefully designed with particular attention paid to environmental protection:

- CFC-free refrigerants
- CFC-free insulation material
- Energy-saving design
- Limited acoustic emissions
- Dryer and packaging comprise reusable materials

This symbol advises the user to observe the environmental aspects and comply with the recommendations connected with this symbol.

---

\(^2\) Certified skilled personnel are persons who are authorised by the manufacturer, with experience and technical training, who are well-grounded in the respective provisions and laws and capable of carrying out the required works and of identifying and avoiding any risks during the machine transport, installation, operation and maintenance.

Qualified and authorised operators are persons who are instructed by the manufacturer regarding the handling of the refrigeration system, with experience and technical training, and who are well-grounded in the respective provisions and laws.
2.2 Signal words in accordance with ANSI

Danger! Imminent hazard
Consequences of non-observance: serious injury or death

Warning! Potential hazard
Consequences of non-observance: possible serious injury or death

Caution! Imminent hazard
Consequences of non-observance: possible injury or property damage

Notice! Potential hazard
Consequences of non-observance: possible injury or property damage

Important! Additional advice, info, hints
Consequences of non-observance: disadvantages during operation and maintenance, no danger

2.3 Overview of the safety instructions

Certified skilled personnel
Installation works must exclusively be carried out by authorised and qualified skilled personnel. Prior to undertaking any measures on the DRYPOINT® RA 20-960 compressed-air refrigeration dryer, the certified skilled personnel shall read up on the device by carefully studying the operating instructions. The operator is responsible for the adherence to these provisions. The respective directives in force apply to the qualification and expertise of the certified skilled personnel. For safe operation, the device must only be installed and operated in accordance with the indications in the operating instructions. In addition, the national and operational statutory provisions and safety regulations, as well as the accident prevention regulations required for the respective case of application, need to be observed during employment. This applies accordingly when accessories are used.

Danger!
Compressed air!
Risk of serious injury or death through contact with quickly or suddenly escaping compressed air or through bursting and/or unsecured plant components.
Compressed air is a highly dangerous energy source.
Never work on the dryer when the system is under pressure.
Never direct the compressed-air outlet or condensate drain hoses at persons.
The user is responsible for the proper installation of the dryer. Non-observance of the instructions in the "Installation" chapter leads to the expiration of the guarantee. Improper installation may result in dangerous situations for the personnel and/or the device.

Danger!
Supply voltage!
Contact with non-insulated parts carrying supply voltage involves the risk of an electric shock resulting in injuries and death.
Only qualified and skilled personnel are authorised to run electrically-operated devices. Prior to undertaking maintenance measures at the device, the following requirements must be met:
Make sure that the power supply is switched off and that the device is off and marked for maintenance measures. Please also ensure that the power supply cannot be re-established during the works.

Caution!
Refrigerant!
The compressed-air refrigeration dryer uses HFC-containing refrigerants as a coolant.
Please observe the corresponding paragraph entitled "Maintenance works at the refrigeration cycle".
Warning!

Refrigerant leak!

A refrigerant leak involves the danger of serious injury and damage to the environment.

The DRYPOINT® RA 20-960 compressed-air refrigeration dryer contains fluorinated greenhouse gas/refrigerant. Installation, repair and maintenance works at the refrigeration system must only be carried out by certified skilled personnel (specialists). A certification in accordance with EC regulation 303/2008 must be available.

The requirements of the EC 842/2006 directive must be met under all circumstances.

Please refer to the indications on the name plate as regards the type and amount of refrigerant.

Comply with the following protective measures and rules of conduct:

- **Storage**: Keep the container tightly closed. Keep it in a cool and dry place. Protect it against heat and direct sunlight. Keep it away from ignition sources.
- **Handling**: Take measures against electrostatic charging. Ensure good ventilation/suction at the workplace. Check fittings, connections and ducts for tightness. Do not inhale the gas. Avoid contact with the eyes or the skin.
- Prior to carrying out works on refrigerant-carrying parts, remove the refrigerant to such an extent that safe working is possible.
- Do not eat, drink or smoke during work. Keep out of the reach of children.
- **Breathing protection**: ambient-air-independent respirator (at high concentrations).
- **Eye protection**: sealing goggles.
- **Hand protection**: protective gloves (e.g. made of leather).
- **Personal protection**: protective clothing.
- **Skin protection**: use protective cream.

In addition, the safety data sheet for the refrigerant needs to be observed!

Caution!

Hot surfaces!

During operation, several components can reach surface temperatures of more than +60°C. There is the risk of burns.

All components concerned are installed inside of the closed housing. The housing must only be opened by certified skilled personnel³.

Caution!

Improper use!

- The device is intended for the separation of water in compressed air. The dried air cannot be used for breathing-air purposes and is not suitable for the direct contact with food.
- This dryer is not suitable for the treatment of contaminated air or of air containing solids.

---

³ Certified skilled personnel are persons who are authorised by the manufacturer, with experience and technical training, who are well-grounded in the respective provisions and laws and capable of carrying out the required works and of identifying and avoiding any risks during the machine transport, installation, operation and maintenance.

Qualified and authorised operators are persons who are instructed by the manufacturer regarding the handling of the refrigeration system, with experience and technical training, and who are well-grounded in the respective provisions and laws.
Note!
Contaminated intake air!
In the event that the intake air is strongly contaminated (ISO 8573.1 class 3.-3 or poorer quality), we recommend the additional installation of a prefilter (e.g. CLEARPOINT F040), to avoid clogging of the heat exchanger.

Caution!
Heating-up through fire!
In the event of a heating-up through fire, the containers and pipes of the refrigerant system can burst.
In this case, please proceed as follows:
Switch off the refrigeration plant.
Switch off the mechanical ventilation of the machinery compartment.
Use ambient-air-independent respirators.
Containers and plants which are filled with refrigerant can burst violently in the event of fire.
The refrigerants themselves are incombustible, but they are degraded to very toxic products at high temperatures.
Remove the container/plant from the fire zone, as there is the risk of bursting!
Cool down containers and bottles via a directed water jet from a safe position.
In the event of fire, please use an approved fire extinguisher. Water is not a suitable agent to extinguish an electrical fire.
This must only be carried out by persons who are trained and informed about the hazards emanating from the product.

Caution!
Unauthorised intervention!
Unauthorised interventions may endanger persons and plants and lead to malfunction.
Unauthorised interventions, modification and abuse of the pressure devices are prohibited.
The removal of sealings and leadings at safety devices is prohibited.
Operators of the devices must observe the local and national pressure equipment regulations in the country of installation.

Note!
Ambient conditions!
In the event that the dryer is not installed under suitable ambient conditions, the ability of the device to condense refrigerant gas is impaired. This can result in a higher load of the refrigerating compressor, and in a loss of efficiency and performance of the dryer.
This in turn leads to overheated condenser fan motors, to malfunction of electric components and to a breakdown of the dryer. Failures of this type will affect warranty considerations.
Do not install the dryer in an environment in which chemicals with a corrosive effect, explosive gases, toxic gases, evaporation heat, high ambient temperatures or extreme dust and dirt can be found.
3 Proper use

This dryer was designed, manufactured and tested to separate the moisture which normally exists in compressed air. Any other use is considered improper.

The manufacturer shall not be liable for problems occurring as a consequence of improper use. The user alone is responsible for any damage resulting from that.

Furthermore, the correct use includes the compliance with the installation instructions, in particular in respect of:

- The voltage and frequency of the main voltage supply.
- The pressure, temperature and flow rate of the inlet air.
- The pressure, temperature and cooling-water throughput (water-cooled).
- The ambient temperature.

When delivered, the dryer is tested and fully assembled. The customer only needs to connect the device to the system in accordance with the instructions in the following chapters.

4 Exclusion from a field of application

Note!

Improper use!

The device is intended for the separation of water in compressed air. The dried air cannot be used for breathing-air purposes and is not suitable for the direct contact with food.

This dryer is not suitable for the treatment of contaminated air or of air containing solids.
5 Operating instructions in accordance with the 2014/68/EU Pressure Equipment Directive

The DRYPOINT® RA 20-960 compressed-air refrigeration dryer contains pressure equipment in the sense of the 2014/68/EU Pressure Equipment Directive. Therefore, the entire plant needs to be registered with the supervisory authority if required in accordance with the local regulations.

For the examination prior to the start-up and for periodic inspections, the national regulations need to be observed, such as the industrial safety regulation in the Federal Republic of Germany. In countries outside the EU, the respective regulations in force there need to be adhered to.

The proper use of pressure devices is the basic requirement for safe operation. As regards pressure devices, the following points need to be observed:

- The DRYPOINT® RA 20-960 compressed-air refrigeration dryer must only be employed within the pressure and temperature range limits indicated by the manufacturer on the name plate.
- No welding must be carried out on the pressure parts.
- The DRYPOINT® RA 20-960 compressed-air refrigeration dryer must neither be installed in insufficiently ventilated rooms nor near heat sources or inflammable substances.
- To avoid fractures resulting from material fatigue, the refrigeration dryer should not be exposed to vibrations during operation.
- The maximum operating pressure indicated by the manufacturer on the name plate must not be exceeded. It is the installer’s responsibility to install the appropriate safety and control devices. Prior to the start-up of the DRYPOINT® RA 20-960 compressed-air refrigeration dryer, the connected pressure generator (compressor etc.) must be set to the max. permissible operating pressure. The integrated safeguard needs to be checked by an approved inspection agency.
- The documents related to the DRYPOINT® RA 20-960 compressed-air refrigeration dryer (manual, operating instructions, manufacturer’s declaration etc.) must be kept safe for future reference.
- No objects whatsoever must be installed at or placed on the DRYPOINT® RA 20-960 compressed-air refrigeration dryer and the connecting lines.
- Installation of the plant in frost-free places only.
- Operation of the plant is only permissible with fully closed and intact housing and cover panels. Operation of the plant with damaged housing/cover panels is prohibited.
6 Transport

Check the packaging for visible loss or damage. If no visible damage can be ascertained, place the unit in close proximity to the place of installation and unpack the device. During this procedure, the dryer must always remain in an upright position. The components may be damaged when the unit is tilted or turned upside down.

Store the device in a dry environment and do not expose it to extreme weather conditions. Handle with care. Strong shocks can cause irreparable damage.

7 Storage

Keep the device away from extreme weather conditions even when packaged.

Keep the dryer in an upright position, also while it is stored. Tilting the device or turning it upside down can cause irreparable damage to some components.

When the dryer is not in use, it can be stored in its packaging in a dust-free and protected place at a temperature of +1°C … +50°C and at a specific humidity of max. 90%. If the storage period exceeds 12 months, you should contact the manufacturer.

The packaging material is recyclable. Dispose of the material in accordance with the directives and provisions in force in the country of destination.
8  Installation

8.1  Place of installation

Note!

**Ambient conditions!**

In the event that the dryer is not installed under suitable ambient conditions, the ability of the device to condense refrigerant gas is impaired. This can result in a higher load of the refrigerating compressor, and in a loss of efficiency and performance of the dryer.

This in turn leads to overheated condenser fan motors, to malfunction of electric components and to a breakdown of the dryer. Failures of this type will affect warranty considerations.

Do not install the dryer in an environment in which chemicals with a corrosive effect, explosive gases, toxic gases, evaporation heat, high ambient temperatures or extreme dust and dirt can be found.

**Minimum installation requirements:**

- Choose an area which is clean and dry, free from dust and protected against atmospheric disturbances.
- The load-bearing zone must be even, horizontal and able to bear the weight of the dryer.
- Minimum ambient temperature +1°C.
- Maximum ambient temperature +50°C.
- Ensure a proper cooling air replacement.
- Allow a sufficient clearance on each side of the dryer for proper ventilation and to facilitate maintenance operations. The dryer does not require attachment to the floor surface.

**Do not obstruct the ventilation grille (not even partially).**

Prevent any recirculation of the outgoing cooling air.

Protect the dryer against draughts.

**Note!**

Dryers models RA 20 – 135 can be wall-mounted. See fixing dimensions on dimensional drawings in the appendices section.

The hanging mounting inevitably causes the obstruction of the ventilation grid positioned on the panel facing the wall fixing. This obstruction, in any case, does not prejudge the efficiency of the ventilation inside the dryer which is guaranteed by other grids on the other panels.
8.2 Installation plan

Installation **type A** is recommended when the total consumption corresponds to the throughput rate of the compressor.

Installation **type B** is recommended when the air consumption constantly varies, with peak values which considerably exceed the throughput rate of the compressor. The storage capacity of the tank must be dimensioned in such a way that a possible short-term high air demand (peak air consumption) can be compensated.

**Do not obstruct the ventilation grille (not even partially).**
Prevent any recirculation of the outgoing cooling air.
Protect the dryer against draughts.

**Note!**
**Contaminated intake air!**
In the event that the intake air is strongly contaminated (ISO 8573.1 class 3.-3 or poorer quality), we recommend the additional installation of a prefilter (e.g. CLEARPOINT F040), to avoid clogging of the heat exchanger.
8.3 Correction factors

**Correction factor for operating pressure modifications:**

<table>
<thead>
<tr>
<th>Air inlet pressure (bar(g))</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor (F1)</td>
<td>0.77</td>
<td>0.86</td>
<td>0.93</td>
<td>1.00</td>
<td>1.05</td>
<td>1.14</td>
<td>1.21</td>
<td>1.27</td>
</tr>
</tbody>
</table>

**Correction factor for ambient temperature modifications (air cooling):**

<table>
<thead>
<tr>
<th>Ambient temperature (ºC)</th>
<th>≤ 25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor (F2)</td>
<td>1.00</td>
<td>0.96</td>
<td>0.91</td>
<td>0.85</td>
<td>0.76</td>
<td>0.64</td>
</tr>
</tbody>
</table>

**Correction factor for air inlet temperature modifications:**

<table>
<thead>
<tr>
<th>Air temperature (ºC)</th>
<th>≤ 25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor (F3)</td>
<td>1.27</td>
<td>1.21</td>
<td>1.00</td>
<td>0.84</td>
<td>0.70</td>
<td>0.57</td>
<td>0.48</td>
<td>0.42</td>
</tr>
</tbody>
</table>

**Correction factor for dew point modifications:**

<table>
<thead>
<tr>
<th>Pressure dew point (ºC)</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor (F4)</td>
<td>1.00</td>
<td>1.09</td>
<td>1.19</td>
<td>1.37</td>
</tr>
</tbody>
</table>

**Calculation of the actual air throughput:**

Actual air throughput = air throughput acc. to planning x factor (F1) x factor (F2) x factor (F3) x factor (F4)

**Example:**

The **DRYPOINT RA 240** has a planned nominal capacity of 240 m³/h. The highest achievable air mass under the following operating conditions is:

- Air inlet pressure = 8 bar(g)  \( \Leftrightarrow \) Factor (F1) = 1.05
- Ambient temperature = 30°C  \( \Leftrightarrow \) Factor (F2) = 0.96
- Air inlet temperature = 40°C  \( \Leftrightarrow \) Factor (F3) = 0.84
- Pressure dew point = 5°C  \( \Leftrightarrow \) Factor (F4) = 1.09

Every function parameter corresponds to a numerical factor which, multiplied by the planned nominal capacity, determines the following:

Actual air throughput = 240 x 1.05 x 0.96 x 0.84 x 1.09 = 222 m³/h

222 m³/h is the maximum flow rate of the dryer under the aforementioned operating conditions.

**Selection of the best suitable model in accordance with the operating conditions:**

<table>
<thead>
<tr>
<th>Air throughput acc. to planning</th>
<th>Requ. air throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor (F1) x Factor (F2) x Factor (F3) x Factor (F4)</td>
</tr>
</tbody>
</table>

**Example:**

The following operating parameters are known:

- Required air mass = 180 m³/h  \( \Leftrightarrow \) Factor (F1) = 1.05
- Air inlet pressure = 8 bar(g)  \( \Leftrightarrow \) Factor (F2) = 0.96
- Ambient temperature = 30°C  \( \Leftrightarrow \) Factor (F3) = 0.84
- Pressure dew point = 5°C  \( \Leftrightarrow \) Factor (F4) = 1.09

To find out the correct dryer version, the required air mass must be divided by the correction factors of the parameters indicated above:
### Installation

| Air throughput acc. to planning = \[
| \frac{180}{1.05 \times 0.96 \times 0.84 \times 1.09} = 195 \text{ m}^3/\text{h} |
| \]
| The suitable model for these requirements is **DRYPOINT RA 240** (with a spec. nominal capacity of 240 m³/h).

#### 8.4 Connection to the compressed-air system

**Danger!**

**Compressed air!**

All works must only be carried out by qualified skilled personnel. Never work on compressed-air systems which are under pressure.

The operator or the user must ensure that the dryer is never operated with a pressure exceeding the maximum pressure value indicated on the name plate.

Exceeding the maximum operating pressure can be dangerous for the operator but also for the device.

The air temperature and the air flow at the inlet of the dryer must lie within the limit values indicated on the name plate. The connecting lines must be free from dust, iron rust, shards and other contaminations and correspond to the flow rate of the dryer. Should air with a very high temperature be treated, the installation of an aftercooler may be necessary. For the implementation of maintenance works, the installation of a bypass system is recommended.

The dryer was designed in such a manner that vibrations that may occur during operation are limited. Therefore, it is advisable to employ connecting lines (flexible hoses, vibration-inhibiting fittings etc.) which protect the dryer against possible vibrations in the pipework.

**Note!**

**Contaminated intake air!**

In the event that the intake air is strongly contaminated (ISO 8573.1 class 3.-3) or poorer quality, we recommend the additional installation of a prefilter (e.g. CLEARPOINT F040), to avoid clogging of the heat exchanger.

#### 8.5 Connection to the cooling-water network

**Danger!**

**Compressed air and unqualified personnel!**

All works must only be carried out by qualified skilled personnel. Never work on compressed-air systems which are under pressure.

The user must ensure that the dryer is never operated with a pressure exceeding the nominal values. Possible overpressure can be dangerous for the operator but also for the device.

The temperature and the amount of cooling water need to correspond to the limit values indicated on the name plate. The cross-section of the connecting lines, which should preferably be flexible, must be free from dust, iron rust, shards and other contaminations. We recommend employing connecting lines (flexible hoses, vibration-inhibiting fittings etc.) which protect the dryer against possible vibrations in the pipework.

**Note!**

**Contaminated intake water!**

In the event that the intake water is strongly contaminated we recommend the additional installation of a prefilter (500 micron), to avoid clogging of the heat exchanger.
### 8.6 Minimum cooling water requirements:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>15 ... 30°C (1)</td>
</tr>
<tr>
<td>Pressure</td>
<td>3...10 bar(g) (2)</td>
</tr>
<tr>
<td>Delivery pressure</td>
<td>&gt; 3 bar (2) (3)</td>
</tr>
<tr>
<td>Total hardness</td>
<td>6.0...15 dH°</td>
</tr>
<tr>
<td>pH</td>
<td>7.5...9.0</td>
</tr>
<tr>
<td>Conductivity</td>
<td>10...500 μS/cm</td>
</tr>
<tr>
<td>Residual solids</td>
<td>&lt;30 mg/l or ppm</td>
</tr>
<tr>
<td>Saturation mark SI</td>
<td>-0.2 &lt; 0 &lt; 0.2</td>
</tr>
<tr>
<td>HCO₃</td>
<td>70...300 mg/l or ppm</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>&lt;70 mg/l or ppm</td>
</tr>
<tr>
<td>HCO₃ / SO₄</td>
<td>&gt;1.0 mg/l or ppm</td>
</tr>
<tr>
<td>NH₃</td>
<td>&lt;2 mg/l or ppm</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>&lt;50 mg/l or ppm</td>
</tr>
<tr>
<td>Cl₂</td>
<td>&lt;0.5 mg/l or ppm</td>
</tr>
<tr>
<td>CO₂</td>
<td>&lt;5 mg/l or ppm</td>
</tr>
<tr>
<td>H₂S</td>
<td>&lt;0.05 mg/l or ppm</td>
</tr>
<tr>
<td>NO₃</td>
<td>&lt;100 mg/l or ppm</td>
</tr>
<tr>
<td>Fe</td>
<td>&lt;0.2 mg/l or ppm</td>
</tr>
<tr>
<td>Al</td>
<td>&lt;0.2 mg/l or ppm</td>
</tr>
<tr>
<td>Mn</td>
<td>&lt;0.1 mg/l or ppm</td>
</tr>
</tbody>
</table>

**Note:**

1. Other temperatures upon request – check the data on the name plate.
2. Other pressures upon request – check the data on the name plate.
3. Pressure difference at the water connection of the dryer at maximum water flow. Other delivery pressures upon request.

**CAUTION!**

During the piping of the dryer, the inlet and outlet connections need to be supported as is shown in the illustration. Non-observance will cause damage.
8.7 Electrical connections

**Danger!**
**Supply voltage!**

The connection to the electric mains should only be carried out by qualified skilled personnel and must correspond to the legal provisions in force in your region.

Prior to connecting the device, please check the name plate to avoid exceeding the indicated values. The voltage tolerance is +/- 10%.

Dryers are supplied with a VDE 16A standard power cord and safety plug (two-pole and earth connection) or with a junction box on the back plate.

Make sure that suitable fuses or circuit breakers in accordance with the indications on the name plate are available. A residual-current device (RCD) with $I_{\Delta n} = 0.03A$ is suggested. The cross-section of the power supply cable must correspond to the power consumption of the dryer. In this respect, the ambient temperature, the cable laying conditions, the length of the cables and the requirements of the local electricity supplier need to be considered.

**Danger!**
**Supply voltage and missing earth connection!**

Important: ensure that the plant is connected to earth.
Do not use plug adapters at the power plug.
Possible replacement of the power plug must only be carried out by a qualified electrician.

8.8 Condensate drain

**Danger!**
**Compressed air and condensate under pressure!**

The condensate is discharged at system pressure.
The drain pipe needs to be secured.
Never direct the condensate drain pipe at persons.

The dryer is delivered with an already integrated electronically level-controlled BEKOMAT condensate drain. Connect the condensate drain with a collection system or container by properly screwing it on.

Do not connect the drain with pressurised plants.

Do not discharge the condensate into the environment.
The condensate accumulating in the dryer contains oil particles which were released into the air by the compressor.
Dispose of the condensate in accordance with the local provisions.

It is advisable to install a water-oil separator, to which the total amount of condensate from the compressors, dryers, tanks, filters etc. is supplied.
We recommend ÖWAMAT oil-water separators for dispersed compressor condensate and BEKOSPLIT emulsion-splitting plants for emulsified condensate.
9 Start-up

9.1 Preliminary stages

Note!

Exceeding of the operating parameters!

Ensure that the operating parameters comply with the nominal values indicated on the name plate of the dryer (voltage, frequency, air pressure, air temperature, ambient temperature etc.).

Prior to delivery, this dryer was thoroughly tested, packed and checked. Please verify the soundness of the dryer during the initial start-up and check the perfect functioning during the first operating hours.

The initial start-up must be carried out by qualified personnel.

During the installation and operation of this device, all national regulations regarding electronics and any other federal and state ordinances, as well as local provisions, need to be adhered to.

The operator and the user must ensure that the dryer is not operated without panels.

9.2 Initial start-up

Note!

The dryer must not be started up more than six times an hour. Wait at least five minutes prior to every restart.

The user is responsible for the compliance with these provisions. Irreparable damage can be caused by starting up the device too often.

The method below should be applied during the first start-up, after longer downtimes or subsequent to maintenance works.

The start-up must be carried out by certified skilled personnel.

Processing sequence (see Section 11.1 "Control panel")

- Ensure that all steps of the "Installation" chapter have been carried out.
- Ensure that the connection to the compressed-air system is in accordance with the provisions and that the lines are fixed and supported properly.
- Ensure that the condensate drain pipe is fixed in accordance with the provisions and that it is connected with a collection system or a container.
- Ensure that the bypass system (if installed) is open and that the dryer is disconnected from the compressed-air system.
- Ensure that the manual valve of the condensate drainage cycle is open.
- Ensure that the cooling-water flow and the cooling-water temperature are in accordance with the provisions (water-cooled).
- Remove any packaging material and other items which may block the space around the dryer.
- Establish the mains connection (plug into socket).
- RA 330-960 3phase - wait at least two hours before starting the dryer (the crankcase heater of the compressor needs to heat up the compressor oil).
- Start the dryer by switching on the main switch on the control panel (pos. 1).
- Make sure that the electronic control unit is switched on.
- Ensure that the power consumption complies with the values on the name plate.
- Ensure that the fan runs properly – wait for the first interventions (air-cooled).
- Wait until the dew point remains stable.
- Slowly open the air inlet valve.
- Slowly open the air outlet valve.
- Slowly close the central bypass valve of the system (if installed).
- Check the pipes for air leakage.
- Ensure the proper functioning of the condensate drain cycle (wait for the first condensate discharges).
Start-up

Note!
A dew point between 0°C and +10°C displayed on the electronic control unit is considered to be correct according to the possible operating conditions (flow rate, air inlet temperature, ambient temperature etc.).

During the operation, the refrigerating compressor runs continuously. The dryer needs to be switched on during the entire compressed-air usage time, even if the compressed-air compressor works periodically.

9.3 Shut down and restart

RA 330-960 3phase - during short-term inactivity (max. two to three days), it is advisable to leave the dryer and the control panel connected to the supply current circuit. Otherwise, it would be necessary at a restart of the dryer to wait two hours, until the crankcase heater of the compressor has heated up the oil in the compressor.

Shut down (see Section 11.1 "Control panel")

• Ensure that the dew point temperature indicated on the electronic control unit is stable.
• Interrupt the compressed-air supply.
• After a few minutes, stop the dryer by switching off the main switch on the control panel (pos. 1).

Restart (see Section 11.1 "Control panel")

• Make sure that the condenser is clean (air-cooled).
• Ensure that the cooling-water flow and the temperature are in accordance with the provisions (water-cooled).
• Check whether or not voltage is applied at the dryer.
• Start the dryer by switching on the main switch on the control panel (pos. 1).
• Ensure that the electronic control unit is switched on.
• Wait a few minutes and then check, whether or not the dew point temperature indicated on the electronic control unit is stable and whether or not the condensate is drained off at regular intervals.
• Establish the compressed-air supply.

RA 330-960 3phase - dryer remote control ON/OFF

• Remove the jumper between terminals 1 and 2 of the terminal strip and wire a potential-free contact (see electric diagram).
• Switch ON the main switch - pos. 1 on the control panel.
• Close the contact at terminals 1 and 2 to switch on the dryer.
• Open the contact at terminals 1 and 2 to switch off the dryer.

Only use potential-free contacts that are suitable for 230Vac. Ensure the sufficient insulation of potentially dangerous voltage-carrying components.

Caution!
Automatic restart / remote control ON/OFF. The unit may start up without any active influence!

The user will be responsible for the installation of proper protections for possible sudden power restoration to the dryer.

During the operation, the refrigerating compressor runs continuously. The dryer needs to be switched on during the entire compressed-air usage time, even if the compressed-air compressor works periodically.

Note!
A dew point between 0°C and +10°C displayed on the electronic control unit is considered to be correct according to the possible operating conditions (flow rate, air inlet temperature, ambient temperature etc.).
Note!

The dryer must not be started up more than six times an hour. Wait at least five minutes prior to every restart.
The user is responsible for the compliance with these provisions. Irreparable damage can be caused when starting up the device too often.
### Technical data

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DRYPOINT RA</th>
<th>20</th>
<th>35</th>
<th>50</th>
<th>70</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air flow rate at nominal condition (1)</td>
<td>[m³/h]</td>
<td>21</td>
<td>33</td>
<td>51</td>
<td>72</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>[l/min]</td>
<td>350</td>
<td>550</td>
<td>850</td>
<td>1200</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>[scfm]</td>
<td>12</td>
<td>19</td>
<td>30</td>
<td>42</td>
<td>64</td>
</tr>
<tr>
<td>Pressure DewPoint at nominal condition (1)</td>
<td>[°C]</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal ambient temperature</td>
<td>[°C]</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min...Max ambient temperature</td>
<td>[°C]</td>
<td></td>
<td>1...50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air temperature (max.)</td>
<td>[°C]</td>
<td></td>
<td>35 (70)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air pressure</td>
<td>[bars]</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. inlet air pressure</td>
<td>[bars]</td>
<td></td>
<td>16</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air pressure drop - Δp</td>
<td>[bar]</td>
<td>0.02</td>
<td>0.03</td>
<td>0.08</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td>Inlet - Outlet connections</td>
<td>[BSP-F]</td>
<td>G 1/2”</td>
<td></td>
<td>G 1”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerant type</td>
<td></td>
<td>R134.a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerant quantity (2)</td>
<td>[kg]</td>
<td>0.17</td>
<td>0.19</td>
<td>0.22</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Cooling air fan flow</td>
<td>[m³/h]</td>
<td></td>
<td>200</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Heat Rejection</td>
<td>[kW]</td>
<td>0.45</td>
<td>0.57</td>
<td>0.68</td>
<td>0.87</td>
<td>1.00</td>
</tr>
<tr>
<td>Standard Power Supply (2)</td>
<td>[Ph/V/Hz]</td>
<td>1/230/50-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal electric consumption @50Hz</td>
<td>[kW]</td>
<td>0.16</td>
<td>0.18</td>
<td>0.22</td>
<td>0.23</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>[A]</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Nominal electric consumption @60Hz</td>
<td>[kW]</td>
<td>0.21</td>
<td>0.22</td>
<td>0.27</td>
<td>0.28</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>[A]</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Full Load Amperage FLA</td>
<td>[A]</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>2.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Max. noise level at 1 m</td>
<td>[dBA]</td>
<td></td>
<td>&lt; 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
<td>23</td>
<td>29</td>
<td>31</td>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>

1. The nominal condition refers to an ambient temperature of +25°C with inlet air at 7 bars and +35°C.
2. Check the data shown on the identification plate.
### Technical data DRYPOINT RA 135-960

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DRYPOINT RA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>135</td>
</tr>
<tr>
<td><strong>Air flow rate at nominal condition (1)</strong> [m3/h]</td>
<td>138</td>
</tr>
<tr>
<td><strong>Pressure DewPoint at nominal condition (1)</strong> [°C]</td>
<td>3</td>
</tr>
<tr>
<td><strong>Nominal ambient temperature</strong> [°C]</td>
<td>25</td>
</tr>
<tr>
<td><strong>Min...Max ambient temperature</strong> [°C]</td>
<td>1...60</td>
</tr>
<tr>
<td><strong>Nominal inlet air temperature (max.)</strong> [°C]</td>
<td>35 (70)</td>
</tr>
<tr>
<td><strong>Nominal inlet air pressure</strong> [bar]</td>
<td>7</td>
</tr>
<tr>
<td><strong>Max. inlet air pressure</strong> [bar]</td>
<td>14</td>
</tr>
<tr>
<td><strong>Air pressure drop - Δp</strong> [bar]</td>
<td>0.17</td>
</tr>
<tr>
<td><strong>Inlet - Outlet connections</strong> [BSP-F]</td>
<td>G 1&quot;</td>
</tr>
</tbody>
</table>

### Refrigerant type

<table>
<thead>
<tr>
<th>Refrigerant type</th>
<th>R134.a</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2) [kg]</td>
<td>0.23</td>
<td>0.42</td>
</tr>
<tr>
<td>Cooling air fan flow [m3/h]</td>
<td>300</td>
<td>380</td>
</tr>
<tr>
<td><strong>Heat Rejection</strong> [kW]</td>
<td>1.70</td>
<td>2.36</td>
</tr>
</tbody>
</table>

### Standard Power Supply (2) [Ph/V/Hz]

<table>
<thead>
<tr>
<th>Standard Power Supply (2) [Ph/V/Hz]</th>
<th>1/230/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal electric consumption [kW]</td>
<td>0.46</td>
</tr>
<tr>
<td>Full Load Amperage FLA [A]</td>
<td>2.8</td>
</tr>
<tr>
<td>Max. noise level at 1 m [dB(A)]</td>
<td>3.5</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>37</td>
</tr>
</tbody>
</table>

### Water-Cooled

<table>
<thead>
<tr>
<th>Refrigerant type</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2) [kg]</td>
<td></td>
</tr>
<tr>
<td>Max. cooling water inlet temp (3) [°C]</td>
<td></td>
</tr>
<tr>
<td>Min...Max. cooling water inlet pressure [bar]</td>
<td></td>
</tr>
<tr>
<td>Cooling water flow at 15°C [m3/h]</td>
<td></td>
</tr>
<tr>
<td>Cooling water flow at 30°C [m3/h]</td>
<td></td>
</tr>
<tr>
<td><strong>Heat Rejection</strong> [kW]</td>
<td></td>
</tr>
<tr>
<td>Control of cooling water flow</td>
<td>Automatic by valve</td>
</tr>
<tr>
<td><strong>Cooling water connection</strong> [BSP-F]</td>
<td></td>
</tr>
<tr>
<td>**Standard Power Supply (2) [Ph/V/Hz]</td>
<td></td>
</tr>
<tr>
<td>Nominal electric consumption [kW]</td>
<td></td>
</tr>
<tr>
<td>Full Load Amperage FLA [A]</td>
<td></td>
</tr>
<tr>
<td>Max. noise level at 1 m [dB(A)]</td>
<td></td>
</tr>
<tr>
<td>Weight [kg]</td>
<td></td>
</tr>
</tbody>
</table>

1. The nominal condition refers to an ambient temperature of +25°C with inlet air at 7 bar and +35 °C.
2. Check the data shown on the identification plate.
3. Other temperature on request.
## Technical data

### DRYPOINT RA 330-960 3phase 3/400/50

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DRYPOINT RA</th>
<th>330-C</th>
<th>370-C</th>
<th>490-C</th>
<th>630-C</th>
<th>750-C</th>
<th>870-C</th>
<th>960-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air flow rate at nominal condition (1) [m³/h]</td>
<td>300</td>
<td>372</td>
<td>486</td>
<td>630</td>
<td>750</td>
<td>870</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>[l/min]</td>
<td>6000</td>
<td>6200</td>
<td>8100</td>
<td>10600</td>
<td>12500</td>
<td>14500</td>
<td>16000</td>
<td></td>
</tr>
<tr>
<td>[scfm]</td>
<td>194</td>
<td>219</td>
<td>286</td>
<td>371</td>
<td>441</td>
<td>512</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>Pressure Dewpoint at nominal condition (1) [°C]</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal ambient temperature [°C]</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Max ambient temperature [°C]</td>
<td>1..50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air temperature (max.) [°C]</td>
<td>35 (70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air pressure [bar]</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. inlet air pressure [bar]</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air pressure drop - Δp [bar]</td>
<td>0.15</td>
<td>0.18</td>
<td>0.09</td>
<td>0.13</td>
<td>0.07</td>
<td>0.13</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Inlet - Outlet connections [BSP-F]</td>
<td>G 1 1/2&quot;</td>
<td>G 2&quot;</td>
<td>G 2 1/2&quot;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Refrigerant type

<table>
<thead>
<tr>
<th></th>
<th>R134a</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2) [kg]</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>Cooling air fan flow [m³/h]</td>
<td>2300</td>
<td>2500</td>
</tr>
<tr>
<td>Heat Rejection [kW]</td>
<td>3.19</td>
<td>3.26</td>
</tr>
<tr>
<td>Standard Power Supply (2) [Ph/V/Hz]</td>
<td>3/400/50</td>
<td></td>
</tr>
<tr>
<td>Nominal electric consumption [kW]</td>
<td>1.10</td>
<td>1.15</td>
</tr>
<tr>
<td>Full Load Amperage FLA [A]</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Max. noise level at 1 m [dB(A)]</td>
<td>&lt; 70</td>
<td></td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>72</td>
<td>80</td>
</tr>
</tbody>
</table>

### Water Circuit

<table>
<thead>
<tr>
<th></th>
<th>R134a</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2) [kg]</td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>Max. cooling water inlet temp (3) [°C]</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Min..Max. cooling water inlet pressure [bar]</td>
<td>3...10</td>
<td></td>
</tr>
<tr>
<td>Cooling water flow at 15°C [m³/h]</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Cooling water flow at 30°C [m³/h]</td>
<td>0.29</td>
<td>0.30</td>
</tr>
<tr>
<td>Heat Rejection [kW]</td>
<td>3.19</td>
<td>3.26</td>
</tr>
<tr>
<td>Control of cooling water flow</td>
<td>Automatic by valve</td>
<td></td>
</tr>
<tr>
<td>Standard Power Supply (2) [Ph/V/Hz]</td>
<td>3/400/50</td>
<td></td>
</tr>
<tr>
<td>Nominal electric consumption [kW]</td>
<td>0.94</td>
<td>0.99</td>
</tr>
<tr>
<td>Full Load Amperage FLA [A]</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Max. noise level at 1 m [dB(A)]</td>
<td>&lt; 70</td>
<td></td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>69</td>
<td>77</td>
</tr>
</tbody>
</table>

---

(1) The nominal condition refers to an ambient temperature of +25°C with inlet air at 7 bar and +35°C.
(2) Check the data shown on the identification plate.
(3) Other temperature on request.
### Technical data

#### DRYPOINT RA 20-960

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air flow rate at nominal condition (1)</td>
<td>[m³/h]</td>
<td>21</td>
<td>33</td>
<td>51</td>
<td>72</td>
<td>108</td>
<td>138</td>
<td>186</td>
<td>240</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>[l/min]</td>
<td>350</td>
<td>550</td>
<td>850</td>
<td>1200</td>
<td>1800</td>
<td>2300</td>
<td>3100</td>
<td>4000</td>
<td>5500</td>
</tr>
<tr>
<td></td>
<td>[scfm]</td>
<td>12</td>
<td>19</td>
<td>30</td>
<td>42</td>
<td>64</td>
<td>81</td>
<td>109</td>
<td>141</td>
<td>194</td>
</tr>
<tr>
<td>Pressure DewPoint at nominal condition (1)</td>
<td>[°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal ambient temperature</td>
<td>[°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min...Max ambient temperature</td>
<td>[°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air temperature (max.)</td>
<td>[°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air pressure</td>
<td>[bar]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. inlet air pressure</td>
<td>[bar]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G 1/2&quot;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air pressure drop - Δp</td>
<td>[bar]</td>
<td>0.02</td>
<td>0.03</td>
<td>0.08</td>
<td>0.11</td>
<td>0.13</td>
<td>0.17</td>
<td>0.15</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Inlet - Outlet connections</td>
<td>[BSP-F]</td>
<td>G 1/2&quot;</td>
<td>G 1&quot;</td>
<td>G 1 1/4&quot;</td>
<td>G 1 1/2&quot;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Refrigerant details

<table>
<thead>
<tr>
<th>Refrigerant type</th>
<th>R134.a</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2)</td>
<td>[kg]</td>
<td>0.18</td>
</tr>
<tr>
<td>Cooling air fan flow</td>
<td>[m³/h]</td>
<td>300</td>
</tr>
<tr>
<td>Heat Rejection</td>
<td>[kW]</td>
<td>0.53</td>
</tr>
<tr>
<td>Standard Power Supply (2)</td>
<td>[Ph/Hz]</td>
<td>1/15/60</td>
</tr>
<tr>
<td>Nominal electric consumption</td>
<td>[A]</td>
<td>0.16</td>
</tr>
<tr>
<td>Full Load Amperage FLA</td>
<td>[A]</td>
<td>3.1</td>
</tr>
<tr>
<td>Max. noise level at 1 m</td>
<td>[dbA]</td>
<td>&lt; 70</td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
<td>28</td>
</tr>
</tbody>
</table>

#### Water-cooled

<table>
<thead>
<tr>
<th>Refrigerant type</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2)</td>
<td>[kg]</td>
</tr>
<tr>
<td>Max. cooling water inlet temp (3)</td>
<td>[°C]</td>
</tr>
<tr>
<td>Min...Max. cooling water inlet pressure</td>
<td>[bar]</td>
</tr>
<tr>
<td>Cooling water flow at 15°C</td>
<td>[m³/h]</td>
</tr>
<tr>
<td>Cooling water flow at 30°C</td>
<td>[m³/h]</td>
</tr>
<tr>
<td>Heat Rejection</td>
<td>[kW]</td>
</tr>
<tr>
<td>Control of cooling water flow</td>
<td>[ ]</td>
</tr>
<tr>
<td>Cooling water connection</td>
<td>[BSP-F]</td>
</tr>
<tr>
<td>Standard Power Supply (2)</td>
<td>[Ph/Hz]</td>
</tr>
<tr>
<td>Nominal electric consumption</td>
<td>[kW]</td>
</tr>
<tr>
<td>Full Load Amperage FLA</td>
<td>[A]</td>
</tr>
<tr>
<td>Max. noise level at 1 m</td>
<td>[dbA]</td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
</tr>
</tbody>
</table>

---

1. The nominal condition refers to an ambient temperature of +25°C with inlet air at 7 barg and +35°C.
2. Check the data shown on the identification plate.
3. Other temperature on request.
<table>
<thead>
<tr>
<th>MODEL</th>
<th>DRYPOINT RA 135 E</th>
<th>150 E</th>
<th>240 E</th>
<th>330 E</th>
<th>370 E</th>
<th>450 E</th>
<th>630 E</th>
<th>750 E</th>
<th>870 E</th>
<th>960 E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m³/h]</td>
<td>138</td>
<td>185</td>
<td>240</td>
<td>330</td>
<td>372</td>
<td>486</td>
<td>630</td>
<td>750</td>
<td>870</td>
</tr>
<tr>
<td></td>
<td>[l/min]</td>
<td>2300</td>
<td>3100</td>
<td>4000</td>
<td>5500</td>
<td>6200</td>
<td>8100</td>
<td>10500</td>
<td>12500</td>
<td>14500</td>
</tr>
<tr>
<td></td>
<td>[scfm]</td>
<td>81</td>
<td>109</td>
<td>141</td>
<td>194</td>
<td>219</td>
<td>286</td>
<td>371</td>
<td>441</td>
<td>512</td>
</tr>
<tr>
<td>Pressure DewPoint at nominal condition (1)</td>
<td>°C</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal ambient temperature</td>
<td>°C</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min., Max. ambient temperature</td>
<td>°C</td>
<td>1...50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air temperature (max.)</td>
<td>°C</td>
<td>35 (70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal inlet air pressure</td>
<td>[bar]</td>
<td>0.17</td>
<td>0.15</td>
<td>0.20</td>
<td>0.15</td>
<td>0.18</td>
<td>0.09</td>
<td>0.13</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Max. inlet air pressure</td>
<td>[bar]</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air pressure drop - Δp</td>
<td>[BSP-F]</td>
<td>G 1&quot;</td>
<td>G 1 1/4&quot;</td>
<td>G 1 1/2&quot;</td>
<td>G 2&quot;</td>
<td>G 2 1/2&quot;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet - Outlet connections</td>
<td></td>
</tr>
</tbody>
</table>

### Refrigerant Type

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>R134 a</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R134 a</td>
<td>0.27</td>
<td>0.45</td>
</tr>
<tr>
<td>R407C</td>
<td>0.50</td>
<td>0.62</td>
</tr>
</tbody>
</table>

### Air-Cooled

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling air fan flow</td>
<td>[m³/h]</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>780</td>
<td>780</td>
</tr>
<tr>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

### Refrigerant Quantity

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>R134 a</td>
<td>0.80</td>
</tr>
<tr>
<td>R407C</td>
<td>0.95</td>
</tr>
</tbody>
</table>

### Standard Power Supply (2)

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/230/60</td>
<td>3</td>
</tr>
</tbody>
</table>

### Heat Rejection

<table>
<thead>
<tr>
<th>kW</th>
<th>3.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.78</td>
<td>5.04</td>
</tr>
<tr>
<td>5.95</td>
<td>7.08</td>
</tr>
<tr>
<td>7.83</td>
<td>8.00</td>
</tr>
</tbody>
</table>

### Water-Cooled

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control cooling water flow</td>
<td>Automatic by valve</td>
</tr>
<tr>
<td>Cooling water connection</td>
<td>[BSP-F]</td>
</tr>
<tr>
<td>Standard Power Supply (2)</td>
<td>[Kw/V/Hz]</td>
</tr>
<tr>
<td>1/230/60</td>
<td></td>
</tr>
<tr>
<td>Nominal electric consumption</td>
<td>[kW]</td>
</tr>
<tr>
<td>0.86</td>
<td>1.10</td>
</tr>
<tr>
<td>1.20</td>
<td>1.50</td>
</tr>
<tr>
<td>1.65</td>
<td>1.70</td>
</tr>
<tr>
<td>1.75</td>
<td></td>
</tr>
</tbody>
</table>

### Weight

<table>
<thead>
<tr>
<th>Weight</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>61</td>
</tr>
<tr>
<td>89</td>
<td>91</td>
</tr>
<tr>
<td>91</td>
<td>138</td>
</tr>
<tr>
<td>147</td>
<td>156</td>
</tr>
</tbody>
</table>
### Technical data DRYPOINT RA 330-960 3phase

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DRYPOINT RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>330.R</td>
<td>370.R</td>
</tr>
<tr>
<td>490.R</td>
<td>630.R</td>
</tr>
<tr>
<td>750.R</td>
<td>870.R</td>
</tr>
<tr>
<td>960.R</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air flow rate at nominal condition (1)</th>
<th>[m³/h]</th>
<th>[l/min]</th>
<th>[scfm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>330</td>
<td>372</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>5500</td>
<td>6200</td>
<td>8100</td>
</tr>
<tr>
<td></td>
<td>194</td>
<td>219</td>
<td>286</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure DewPoint at nominal condition (1)</th>
<th>[°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal ambient temperature</th>
<th>[°C]</th>
<th>25</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Min. Max ambient temperature</th>
<th>[°C]</th>
<th>1.50</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nominal inlet air temperature (max.)</th>
<th>[°C]</th>
<th>35 (70)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nominal inlet air pressure</th>
<th>[barg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max. inlet air pressure</th>
<th>[barg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air pressure drop - Δp</th>
<th>[bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inlet - Outlet connections</th>
<th>[BSP-F]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G 1 1/2”</td>
</tr>
<tr>
<td></td>
<td>G 2”</td>
</tr>
<tr>
<td></td>
<td>G 2 1/2”</td>
</tr>
</tbody>
</table>

### Technical data

#### Refrigerant type

<table>
<thead>
<tr>
<th>Refrigerant type</th>
<th>R134 a</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2)</td>
<td>[kg]</td>
<td>0.78</td>
</tr>
<tr>
<td>Cooling air flow</td>
<td>[m³/h]</td>
<td>2500</td>
</tr>
<tr>
<td>Heat Rejection</td>
<td>[kW]</td>
<td>4.02</td>
</tr>
<tr>
<td>Standard Power Supply (2)</td>
<td>[Ph/V/Hz]</td>
<td>34/60/60</td>
</tr>
<tr>
<td>Nominal electric consumption</td>
<td>[kW]</td>
<td>1.13</td>
</tr>
<tr>
<td>Full Load Amperage FLA</td>
<td>[A]</td>
<td>1.8</td>
</tr>
<tr>
<td>Max. noise level at 1 m</td>
<td>[dbA]</td>
<td>2.8</td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
<td>72</td>
</tr>
</tbody>
</table>

#### Water Cooling

<table>
<thead>
<tr>
<th>Refrigerant type</th>
<th>R134 a</th>
<th>R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant quantity (2)</td>
<td>[kg]</td>
<td>0.95</td>
</tr>
<tr>
<td>Max. cooling water inlet temp (3)</td>
<td>[°C]</td>
<td>1.55</td>
</tr>
<tr>
<td>Min. Max. cooling water inlet pressure</td>
<td>[barg]</td>
<td>30</td>
</tr>
<tr>
<td>Cooling water flow at 15°C</td>
<td>[m³/h]</td>
<td>0.11</td>
</tr>
<tr>
<td>Cooling water flow at 30°C</td>
<td>[m³/h]</td>
<td>0.43</td>
</tr>
<tr>
<td>Heat Rejection</td>
<td>[kW]</td>
<td>4.02</td>
</tr>
<tr>
<td>Control of cooling water flow</td>
<td>Automatic by valve</td>
<td></td>
</tr>
<tr>
<td>Cooling water connection</td>
<td>[BSP-F]</td>
<td>G 1/2”</td>
</tr>
<tr>
<td>Standard Power Supply (2)</td>
<td>[Ph/V/Hz]</td>
<td>34/60/60</td>
</tr>
<tr>
<td>Nominal electric consumption</td>
<td>[kW]</td>
<td>0.95</td>
</tr>
<tr>
<td>Full Load Amperage FLA</td>
<td>[A]</td>
<td>1.15</td>
</tr>
<tr>
<td>Max. noise level at 1 m</td>
<td>[dbA]</td>
<td>5.00</td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
<td>69</td>
</tr>
</tbody>
</table>

---

(1) The nominal condition refers to an ambient temperature of ~25°C with inlet air at 7 barg and ~35 °C.

(2) Check the data shown on the identification plate.

(3) Other temperature on request.
11 Technical description

11.1 Control panel

The control panel explained below is the only dryer user interface.

RA 20 – 240

RA 330 – 960

RA 330 – 960 3phase

1. Main switch
2. Electronic control unit DMC 18
3. Air and refrigerant-gas flow chart

11.2 Functional description

Operating principle – All dryer models described in this manual function according to the same principle. The hot and moisture-loaded air is led into an air/air heat exchanger. Afterwards, the air flows through an evaporator, which is also known as an air/refrigerant heat exchanger. The air temperature is reduced to approximately 2°C, so that water vapour condenses to liquid. The continuously accumulating condensate is collected in the separator to be discharged via the condensate drain. Subsequently, the cold and dry air is led through the air/air heat exchanger, so that it is reheated to up to 8°C below the inlet temperature when leaving the dryer.

Refrigeration cycle – The refrigerant is conducted through the compressor and reaches a condenser under high pressure. There, cooling-down takes place, making the refrigerant condense to a liquid state which is under high pressure. The liquid is pressed through a capillary tube where the resulting pressure drop ensures that the refrigerant evaporates at a defined temperature. The liquid refrigerant which is under low pressure is led into the heat exchanger, where it expands. The cold resulting from the expansion serves to cool down the compressed air.
in the heat exchanger. During this process, the refrigerant evaporates. The low-pressure gas is resupplied to the compressor, where it is compressed again. It then re-enters the cycle. In phases of a reduced compressed-air load, the excess refrigerant is resupplied automatically to the compressor via the hot gas bypass valve.
11.3 Flow chart (air-cooled)

1. Aluminium heat exchanger module
   a – Air/air heat exchanger
   b – Air/refrigerant heat exchanger
   c – Condensate separator
2. Refrigerant pressure switch LPS (P<) (RA 490-960 and RA 330-960 3phase)
4. Refrigerant pressure switch HPS (P>) (RA 490-960 and RA 330-960 3phase)
5. Refrigerant fan pressure switch PV
6. Refrigerating compressor
7. Hot-gas bypass valve
8. Condensate (air-cooled)

11.4 Flow chart (water-cooled)

9. Condenser fan (air cooled)
10. Filter dryer
11. Capillary tube
12. T1 temperature sensor (dew point)
13. Condensate drain shut-off valve
14. Condenser (water-cooled)
15. Cooling-water regulating valve (water-cooled)
16. Liquid collector (water-cooled)
17. BEKOMAT condensate drain
18. Compressor crankcase heater (RA 330-960 3phase)

Compressed-air flow direction  Refrigerant gas flow direction
11.5 Refrigerating compressor
The employed refrigerating compressors are constructed by leading manufacturers. The hermetically sealed construction is absolutely gastight. The integrated safeguard protects the compressor against overheating and excess current. The protection is automatically reset as soon as the nominal conditions are reached again.

11.6 Condenser (air-cooled)
The condenser is the component in which the gas coming from the compressor is cooled down, condensed and liquefied. Under no circumstances must the temperature of the ambient air exceed the nominal values. It is also important that the condenser unit is kept free from dust and other impurities.

11.7 Condenser (water-cooled)
The condenser is the component in which the gas coming from the compressor is cooled-down, condensed and liquefied. The water inlet temperature must not exceed the nominal values. Likewise, a correct flow must be ensured. The water entering the condenser must be free from impurities.

11.8 Cooling-water regulating valve
The cooling-water regulating valve serves to keep the condensation pressure or the condensation temperature constant during water cooling. When the dryer is switched off, the valve automatically blocks the cooling-water flow.

The condenser water regulating valve is an operating control device.
The closure of the water circuit from the pressure condenser water regulating valve cannot be used as a safety closure during service operations on the system.

ADJUSTMENT
The condenser water regulating valve is adjusted during the testing phase to a pre-set value that covers 90% of the applications. However, sometimes the extreme operating conditions of the dryer may require a more accurate calibration.
During start-up, a qualified technician should check the condensing pressure/temperature and if necessary adjust the valve by using the screws on the valve itself.
To increase the condensing temperature, turn the adjusting screws counter-clockwise; to lower it turn the screws clock-wise.
Water valve setting : R134.a pressure 10 barg (± 0.5 bar)
R407C pressure 16 barg (± 0.5 bar)

11.9 Filter dryer
Despite controlled vacuuming, traces of moisture can accumulate in the refrigeration cycle. The filter dryer serves to absorb this moisture and to bond it.

11.10 Capillary tube
The capillary tube is a copper tube with a reduced diameter which is located between the condenser and the evaporator, serving as a restrictor to reduce the pressure of the refrigerant. The pressure reduction serves to reach an optimum temperature inside of the evaporator. The lower the outlet pressure at the capillary tube, the lower the evaporation temperature.
The length and the inner diameter of the capillary tube are exactly dimensioned to ensure the performance of the dryer. Settings or maintenance works are not required.

11.11 Aluminium heat exchanger
The heat exchanger module consists of an air/air heat exchanger, an air/refrigerant heat exchanger, and of a high-performance separator. The compressed air flows top-down through the heat exchanger. The large cross-sections of the flow passages cause low flow rates and low compressed-air losses. In the air/air heat exchanger, the heat exchange is effected in a reverse current. This guarantees maximum heat transfer. The heat transfer in the air/refrigerant heat exchanger also takes place in a reverse current. This allows full evaporation of the refrigerant. The high-performance separator ensures almost complete separation of the condensate. Maintenance of the high-performance separator is not required.
11.12 Hot-gas bypass valve

At partial load, the valve directly returns a part of the hot gas to the suction line of the refrigerating compressor. The evaporation temperature and the evaporation pressure remain constant.

**ADJUSTMENT**

The hot gas by-pass valve is adjusted during the manufacturing testing phase. As a rule no adjustment is required; anyway if it is necessary the operation must be carried out by an experienced refrigerating engineer.

**WARNING**

the use of ¼” Schrader service valves must be justified by a real malfunction of the refrigerating system. Each time a pressure gauge is connected, a part of refrigerant is exhausted.

Without compressed air flow through the dryer, rotate the adjusting screw (position A on the drawing) until the following value is reached:

Hot gas setting:
- R134a pressure: 2.0 barg (+0.1 / -0 bar)
- R407C pressure: 4.5 barg (+0.1 / -0 bar)

11.13 Refrigerant pressure switches LPS – HPS – PV

To ensure the operational reliability and the protection of the dryer, a series of pressure switches are installed in the gas cycle.

**LPS**: Low-pressure guard on the suction side of the compressor, which is triggered when the pressure drops below the predetermined value. The values are reset automatically as soon as the nominal conditions are re-established.

Calibrated pressure:
- R134a: Stop 0.7 barg - Restart 1.7 barg
- R407C: Stop 1.7 barg - Restart 2.7 barg

**HPS**: The high-pressure control unit on the discharge side of the compressor is activated when the pressure exceeds the predetermined value. It has a manual reset button on the control itself.

Calibrated pressure:
- R134a: Stop 20 barg - Manual reset (P<14 bar)
- R407C: Stop 30 barg - Manual reset (P<23 bar)

**PV**: Fan control pressure switch which is installed on the discharge side of the compressor. It keeps the condensation temperature and pressure constantly in the range of the preadjusted limit values (air-cooled).

Calibrated pressure:
- R134a: Start 11 barg (+0.5 / -0 bar) – Stop 8 barg (+0 / -0.5 bar)
- R407C: Start 18 barg (+0.5 / -0 bar) – Stop 14 barg (+0 / -0.5 bar)

11.14 Safety temperature switch TS

To ensure the operational safety and the soundness of the dryer, a safety temperature switch (TS) is installed at the refrigeration cycle. In the event that the pressure gas temperature is too high, the sensor of the temperature switch will stop the refrigerating compressor to prevent the pressure gas temperature getting too high.

The temperature switch is reset manually, but only when the normal operating conditions are reached again. Unscrew the cover (see pos. 1 in the illustration) and press the reset button (see position 2 in the illustration).

TS setting: temperature 113 °C (+0 / -6 °K)
11.15 Compressor crankcase heater (RA 330-960 3phase)

At low temperatures, the oil can more easily intermix with the refrigerant gas. When the compressor starts, oil can be drawn into the refrigeration cycle, leading to "hydraulic shocks".

To prevent this, a resistance heater is installed in the suction side of the compressor. When the system is connected with the electric mains and the compressor is idle, the heater will keep the oil at the correct temperature.

This heater is controlled via a temperature switch which prevents the overheating of the oil.

**Note:** The heater must be connected to the mains at least a few hours prior to the start-up of the refrigerating compressor.
**Technical description**

**11.16 DMC 18 electronics (control unit compressed-air dryer)**

The DMC18 controls the alarms and the settings of the dryer operation and of the BEKOMAT drain.

**11.16.1 Switching the dryer on**

Connect the dryer to the electric mains and switch it on via the ON/OFF switch (pos. 1 Section 11.1).

During normal operation, the display shows the dew point temperature.

The condensate drain test is always possible via the button.

**11.16.2 Switching the dryer off**

Switch the device off via the ON/OFF switch (pos. 1 Section 11.1).

**11.16.3 Indication of the operating parameters**

During normal operation, the display shows the dew point temperature (in °C or °F).

Press the button and keep it pressed to display the parameter (alarm release temperature at a high dew point).

Press the button and keep it pressed to display the hours remaining until the next maintenance.

Press the buttons and keep them pressed to display the total number of operating hours of the dryer.

**Note:** The temperatures are indicated in °C or °F (LED or is on).

The total operating hours and the hours until the next maintenance are indicated in the field 0...999 hours, and in thousand hours from 1.0 hours onwards (example: when the display shows 35, this means 35 hours and when the display shows 3.5, this means 3,500 hours).

**11.16.4 Indication of a service warning/service alarm**

A service warning/alarm is an exceptional event and requires the attention of the operator/service technician. The dryer will not be stopped.

When a service warning/alarm is active, the LED flashes.

The display successively shows the dew point temperature and the active service warnings/alarms.

Service warnings/alarms are automatically reset as soon as the problem has been eliminated, except for (maintenance time expired), where manual resetting is required (press the button and keep it pressed for at least 20 seconds).

**NOTE:** the operator/service technician must check the dryer and eliminate the problem that led to the activation of the service warning.
<table>
<thead>
<tr>
<th>Service warning alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PF</strong></td>
<td>PF – Probe failure: failure temperature probe</td>
</tr>
<tr>
<td><strong>HdP</strong></td>
<td>HdP – High dew point: dew point too high, higher than the adjusted HdS value.</td>
</tr>
<tr>
<td><strong>LdP</strong></td>
<td>LdP – Low dew point: dew point too low, lower than the adjusted LdS value.</td>
</tr>
<tr>
<td><strong>drA</strong></td>
<td>drA - Drain: failure Bekomat IF condensate drain – delay 20 minutes</td>
</tr>
<tr>
<td><strong>SrV</strong></td>
<td>SrV - Service: maintenance service time expired SrV</td>
</tr>
</tbody>
</table>

**NOTE:** when the dryer is switched on but no system pressure is applied, the $drA$ drain trouble indication may appear.
11.16.5 Operation of the potential-free failure/alarm contact
The DMC 18 is equipped with a potential-free contact to indicate failures or alarm conditions.

![Dryer is switched on and no service warning/alarm is active.]

![Dryer is off or a service warning/alarm is active.]

11.16.6 How to change operating parameters – SETUP menu
The setup menu can be used to change the dryer’s operating parameters.

Only qualified personnel must be allowed to access to the setup menu. The manufacturer is not responsible for malfunctioning or failure due to modification to the operating parameters.

With dryer ON simultaneously press buttons \( \text{Set} \) + \( \text{Up} \) for at least 5 seconds to enter the setup menu.

Access to the menu is confirmed by message \( \text{HdS} \) on the display (first parameter of menu).

Keep \( \text{Set} \) pressed to display the value of the selected parameter and use arrows \( \text{Down} \) and \( \text{Up} \) to change the value. Release the button \( \text{Set} \) to confirm the value and skip to following parameter.

Press \( \text{Down} \) + \( \text{Up} \) to exit setup menu (if no button is pressed after 30 seconds the menu is exited automatically).

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Limits</th>
<th>Resolution</th>
<th>Standard setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>BdS</td>
<td>High DewPoint Setting: Alarm threshold for a high DewPoint (the alarm disappears when the temperature drop 0.5°C / 1°F below alarm point)</td>
<td>0.0...25.0 °C or 32 ... 77 °F</td>
<td>0.5 °C or 1 °F</td>
<td>20 or 68</td>
</tr>
<tr>
<td>Ids</td>
<td>Low DewPoint Setting: Alarm threshold for a low DewPoint (the alarm disappears when the temperature becomes 0.5°C / 1°F higher than the alarm point)</td>
<td>-10 ... 0.0 °C or 14 ... 32 °F</td>
<td>0.5 °C or 1 °F</td>
<td>-5 or 23</td>
</tr>
<tr>
<td>SrV</td>
<td>Service Setting: setting of service warning timer. 00 = service warning timer disabled.</td>
<td>0.0 ... 9.0 (x 1000) hours</td>
<td>0.5 (x1000) hours</td>
<td>8.0</td>
</tr>
<tr>
<td>SCL</td>
<td>Scale: display scale of temperatures.</td>
<td>°C ... °F</td>
<td>-</td>
<td>°C</td>
</tr>
</tbody>
</table>
11.16.7 Selection of the BEKOMAT drain model
The DMC18 controls two types of BEKOMAT drains.

The correct settings are carried out in the factory and proper functioning is checked during the final inspection of the dryer.
11.17 Electronically level-controlled BEKOMAT condensate drain

The electronically level-controlled BEKOMAT condensate drain boasts a special condensate management which ensures that condensate is discharged safely and without an unnecessary loss of compressed air. This drain has a condensate collection container in which a capacitive sensor continuously monitors the liquid level. As soon as the switching level is reached, the capacitive sensor transmits a signal to the electronic control and a membrane solenoid valve opens to discharge the condensate. The BEKOMAT closes before compressed air emerges.

Note!

These BEKOMAT condensate drains were designed in particular for the operation in a DRYPOINT RA refrigeration dryer. The installation in other compressed-air processing systems or the replacement with another drain brand can lead to malfunction. The maximum operating pressure (see name plate) must not be exceeded!

Ensure that the upstream valve is open when the dryer starts operation.

To obtain detailed information regarding drain functions, troubleshooting, maintenance and spare parts, please read the installation and operating instructions of the BEKOMAT condensate drain.
12 Maintenance, troubleshooting, spare parts and dismantling

12.1 Checks and maintenance

Certified skilled personnel

Installation works must exclusively be carried out by authorised and qualified skilled personnel. Prior to undertaking any measures on the DRYPOINT® RA 20-960 compressed-air refrigeration dryer, the certified skilled personnel shall read up on the device by carefully studying the operating instructions. The operator is responsible for the adherence to these provisions. The respective directives in force apply to the qualification and expertise of the certified skilled personnel.

For safe operation, the device must only be installed and operated in accordance with the indications in the operating instructions. In addition, the national and operational statutory provisions and safety regulations, as well as the accident prevention regulations required for the respective case of application, need to be observed during employment. This applies accordingly when accessories are used.

Danger!
Compressed air!
Risk of serious injury or death through contact with quickly or suddenly escaping compressed air or through bursting and/or unsecured plant components.

Compressed air is a highly dangerous energy source.
Never work on the dryer when the system is under pressure.
Never direct the compressed-air outlet or condensate drain hoses at persons.
The user is responsible for the proper maintenance of the dryer. Non-observance of the instructions in the “Installation” and “Maintenance, troubleshooting, spare parts and dismantling” chapters leads to the expiration of the guarantee. Improper maintenance may result in dangerous situations for the personnel and/or the device.

Danger!
Supply voltage!
Contact with non-insulated parts carrying supply voltage involves the risk of an electric shock resulting in injuries and death.

Only qualified and skilled personnel are authorised to run electrically-operated devices. Prior to undertaking maintenance measures at the device, the following requirements must be met:
Make sure that the power supply is switched off and that the device is off and marked for maintenance measures. Please also ensure that the power supply cannot be re-established during the works.

Prior to carrying out maintenance works at the dryer, switch it off and wait for at least 30 minutes.

Caution!
Hot surfaces!
During operation, several components can reach surface temperatures of more than +60°C. There is the risk of burns.

All components concerned are installed inside of the closed housing. The housing must only be opened by certified skilled personnel.
Some components can reach high temperatures during operation. Avoid any contact until the system or the component has cooled down.

Certified skilled personnel are persons who are authorised by the manufacturer, with experience and technical training, who are well-grounded in the respective provisions and laws and capable of carrying out the required works and of identifying and avoiding any risks during the machine transport, installation, operation and maintenance.

Qualified and authorised operators are persons who are instructed by the manufacturer regarding the handling of the refrigeration system, with experience and technical training, and who are well-grounded in the respective provisions and laws.
**DAILY:**
- Check whether the dew point indicated on the electronics is correct.
- Ensure that the condensate drain system functions properly.
- Make sure that the condenser is clean.

**EVERY 200 HOURS OR MONTHLY**
- Clean the condenser using an air jet (max. 2 bar / 30 psig) inside out. Make sure not to damage the aluminium lamellae of the cooling package.
- Finally, verify the operation of the device.

**EVERY 1,000 HOURS OR ANNUALLY**
- Verify all screws, clamps and connections of the electric system to make sure that they are fastened securely. Check the device for broken and ruptured cables or cables without insulation.
- Check the refrigeration cycle for signs of oil and refrigerant leaks.
- Measure the current strength and note it down. Ensure that the read values are within the permissible limit values, as indicated in the specification table.
- Check the hose lines of the condensate drain and replace them, if required.
- Finally, verify the operation of the device.

**EVERY 8,000 HOURS**
- Replace BEKOMAT Service Unit.

### 12.2 Troubleshooting

**Certified skilled personnel**

Installation works must exclusively be carried out by authorised and qualified skilled personnel. Prior to undertaking any measures on the DRYPOINT® RA 20-960 compressed-air refrigeration dryer, the certified skilled personnel shall read up on the device by carefully studying the operating instructions. The operator is responsible for the adherence to these provisions. The respective directives in force apply to the qualification and expertise of the certified skilled personnel.

For safe operation, the device must only be installed and operated in accordance with the indications in the operating instructions. In addition, the national and operational statutory provisions and safety regulations, as well as the accident prevention regulations required for the respective case of application, need to be observed during employment. This applies accordingly when accessories are used.

**Danger!**

**Compressed air!**

Risk of serious injury or death through contact with quickly or suddenly escaping compressed air or through bursting and/or unsecured plant components.

Compressed air is a highly dangerous energy source.
Never work on the dryer when the system is under pressure.
Never direct the compressed-air outlet or condensate drain hoses at persons.
The user is responsible for the proper maintenance of the dryer. Non-observance of the instructions in the "Installation" and "Maintenance, troubleshooting, spare parts and dismantling" chapters leads to the expiration of the guarantee. Improper maintenance may result in dangerous situations for the personnel and/or the device.
Danger!
Supply voltage!
Contact with non-insulated parts carrying supply voltage involves the risk of an electric shock resulting in injuries and death.

Only qualified and skilled personnel are authorised to run electrically-operated devices. Prior to undertaking maintenance measures at the device, the following requirements must be met:

Make sure that the power supply is switched off and that the device is off and marked for maintenance measures. Please also ensure that the power supply cannot be re-established during the works.
Prior to carrying out maintenance works at the dryer, switch it off and wait for at least 30 minutes.

**Caution!**
**Hot surfaces!**
During operation, several components can reach surface temperatures of more than +60°C. There is the risk of burns.

All components concerned are installed inside of the closed housing. The housing must only be opened by certified skilled personnel.

Some components can reach high temperatures during operation. Avoid any contact until the system or the component has cooled down.

<table>
<thead>
<tr>
<th>FAULT</th>
<th>POSSIBLE REASON – SUGGESTED MEASURE</th>
</tr>
</thead>
</table>
| ◆ The dryer does not start. | ➔ Check whether or not the dryer is connected with the electric mains.  
 ➔ Check the electric cabling.  
 ➔ RA 330-960 3phase- Blow of fuse (FU3 on the electric diagram) of the auxiliary circuit - replace it and check the proper operation of the dryer. |
| ◆ The refrigerating compressor does not work. | ➔ The internal heat protection of the compressor was activated – wait 30 minutes and then retry.  
 ➔ Check the electric cabling.  
 ➔ If installed – replace the internal heat protection and/or the start-up relay and/or the starting capacitor and/or the operating capacitor.  
 ➔ If installed – the HPS pressure switch was activated – see the corresponding point.  
 ➔ If installed – the LPS pressure switch was activated – see the corresponding point.  
 ➔ If installed – the TS safety temperature switch was activated – see the corresponding point.  
 ➔ In the event that the compressor still does not work, replace it. |
| ◆ The fan of the condenser does not work (air-cooled). | ➔ Check the electric cabling.  
 ➔ The PV pressure switch is defective. Contact a BEKO service technician.  
 ➔ RA 330-960 3phase- Blow of fuse (FU1-FU2 on the electric diagram) - replace it and check the proper operation of the dryer.  
 ➔ There is a leak in the refrigeration cycle – contact a BEKO service technician.  
 ➔ In the event that the fan still does not work, replace it. |
| ◆ Dew point too high. | ➔ The dryer does not start up – see the corresponding point.  
 ➔ The T1 dew point sensor does not record the temperature properly – ensure that the sensor is pushed down to the bottom of the aluminium tube immersion sleeve.  
 ➔ The refrigerating compressor does not work – see the corresponding point.  
 ➔ The ambient temperature is too high or the room ventilation insufficient – ensure sufficient ventilation (air-cooled).  
 ➔ The inlet air is too hot – re-establish the nominal conditions.  
 ➔ The inlet air pressure is too low – re-establish the nominal conditions.  
 ➔ The inlet air throughput is higher than the throughput of the dryer – reduce the flow rate - re-establish the nominal conditions.  
 ➔ The condenser is dirty – please clean it (air-cooled).  
 ➔ The condenser fan does not work – see the corresponding point (air-cooled).  
 ➔ The cooling-water flow is insufficient – re-establish the nominal conditions (water-cooled).  
 ➔ The dryer does not discharge the condensate – see the corresponding point.  
 ➔ The hot-gas bypass valve needs to be re-adjusted – contact a BEKO service technician to have the nominal setting re-established.  
 ➔ There is a leak in the refrigeration cycle – contact a BEKO service technician. |
| ◆ Dew point too low. | ➔ The fan runs continuously – the PV pressure switch is defective – replace it (air-cooled).  
 ➔ The ambient temperature is too low –re-establish the nominal conditions.  
 ➔ The hot-gas bypass valve needs to be re-adjusted – contact a BEKO service technician to have the nominal setting re-established. |
Maintenance, troubleshooting, spare parts and dismantling

- **Extreme pressure drop in the dryer.**
  - The dryer does not discharge the condensate — see the corresponding point.
  - The dew point is too low — the condensate is frozen and blocks the air — see the corresponding point.
  - Check the flexible connection hoses for obstructions.

- **The dryer does not drain the condensate.**
  - The shut-off valve at the condensate outlet is closed — open it.
  - Check the electric cabling.
  - The dew point is too low — the condensate is frozen — see the corresponding point.
  - The BEKOMAT condensate drain does not work properly (see BEKOMAT MANUAL).

- **Failure during the condensate discharge.**
  - Please read the separate BEKOMAT installation and operating instructions.

- **Water in the line.**
  - The dryer does not start — see the corresponding point.
  - If installed - untreated air flows through the bypass unit — close the bypass.
  - The dryer does not drain condensate — see the corresponding point.
  - Dew point too high — see the corresponding point.

- **If installed: the HPS high-pressure switch has triggered.**
  - Check which of the following reasons is responsible for the triggering:
    1. The ambient temperature is too high or the room ventilation insufficient — ensure sufficient ventilation (air-cooled).
    2. The condenser is dirty — please clean it (air-cooled).
    3. The condenser fan does not work — see the corresponding point (air-cooled).
    4. The cooling water is too hot — re-establish the nominal conditions (water-cooled).
    5. The cooling-water flow is insufficient — re-establish the nominal conditions (water-cooled).
  - Reset the pressure switch by pressing the button on the controller itself — check the proper functioning of the dryer.
  - The HPS pressure switch is defective — contact a BEKO service technician for the replacement.

- **If installed: the LPS low-pressure switch was triggered.**
  - There is a leak in the refrigeration cycle — please contact a BEKO service technician.
  - The pressure switch is automatically reset as soon as the normal conditions are re-established — check the dryer for proper functioning.

- **If installed: the T₃ safety temperature switch was triggered.**
  - Check which of the following reasons is responsible for the triggering:
    1. Excess thermal load — re-establish the standard operating conditions.
    2. The inlet air is too hot — re-establish the nominal conditions.
    3. The ambient temperature is too high or the room ventilation insufficient — ensure sufficient ventilation.
    4. The condenser unit is dirty — please clean it.
    5. The fan does not work — see the corresponding point.
    6. The hot-gas bypass valve needs to be re-adjusted — contact a specialist for refrigerating plants to have the nominal calibration re-established.
    7. The cooling-water temperature is too low — re-establish the nominal conditions (water-cooled).
    8. The adjusting valve for the cooling-water flow needs to be re-adjusted — contact a specialist to have the nominal calibration re-established (water-cooled).
    9. There is a leak in the refrigeration cycle — please contact a BEKO service technician.
  - Reset the temperature switch by manually pushing the button on the temperature switch — check the perfect functioning of the dryer.
  - The TS temperature switch is defective — replace it.

- **The DMC18 LED is on.**
  - When the LED flashes: one or more service warnings/alarms are active. The display shows the dew point temperature and the active service warnings/alarms.
  - The service warnings are indicated by the following messages:
    1. **PF**: PF – Failure temperature probe T₁ (dew point) — check the electric cabling.
and/or replace the probe.

2. **Hdp** – Dew point too high (higher than the adjusted alarm value) – see the corresponding section.

3. **Ldp** – Dew point too low (lower than the adjusted alarm value) – see the corresponding section.

4. **dRA** – The Bekomat BM-IF condensate drain does not work properly - see the corresponding section. Delay 20 minutes

5. **SrV** – Service – maintenance notification time expired (parameter SrV) – carry out the scheduled maintenance and reset the hour meter.

**NOTE:** SrV Service (service time expired) needs to be reset manually (press the button and keep it pressed for at least 20 seconds).
### 12.3 Recommended spare parts

Spare parts list is printed on a dedicated sticker applied inside the dryer. On this sticker each spare part is identified with its ID Number and related Spare Part Number. Here below the cross-reference table between ID Numbers and exploded drawings Ref. with their description and quantity installed in the dryers.

| ID.N. | DESCRIPTION | 20 | 35 | 50 | 70 | 140 | 150 | 155 | 230 | 250 | 320 | 350 | 400 | 430 | 470 | 490 | 510 | 580 |
|-------|-------------|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2     | Pressure switch | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 3     | Safety thermo switch | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 4     | HPS pressure switch | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 5     | P4 pressure switch | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 6     | MC compressor | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 7     | Hit gas bypass valve | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 9     | MV complete fan | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 11    | Fan motor | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 12    | Fan grid | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 13    | Filter dryer | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 9.3   | BT temperature probe | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 14    | DMC-18 electronic instrument | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 16    | Water regulation valve, water cooled | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 17    | DMC-18 condensate drain | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 18    | ELD | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 21    | ELCM-14 service unit | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| 22    | S1 | Main switch | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| CS    | LED | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |

*DRYPOINT® RA 20-960*
## Maintenance, troubleshooting, spare parts and dismantling

<table>
<thead>
<tr>
<th>ID N.</th>
<th>DESCRIPTION</th>
<th>DP RA 3 PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>2</td>
<td>LPS Pressure switch</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>TS Safety therm switch</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>HPS Pressure switch</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>PV Pressure switch</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>MC Compressor</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>MV Hot gas by-pass valve</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>MV Complete fan</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Filter dryer</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>BT Temperature probe</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>DMC18 Electronic instrument</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Water regulating valve (water cooled)</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>ELD BEKOMAT condensate drain</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>S1 Lighted switch</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>QS Main switch</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>FU Fuse kit</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>KC1 Contactor</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>TF Transformer</td>
<td>1</td>
</tr>
</tbody>
</table>
12.4 Maintenance works at the refrigeration cycle

Caution!
Refrigerant!

Maintenance and repair works at refrigeration systems must only be carried out by BEKO service technicians in accordance with the local provisions. The total amount of refrigerant in the system must be collected for recycling purposes, resource recovery or disposal.

The refrigerant must not be discharged into the environment.

When delivered, the dryer is ready to operate and filled with a refrigerant of the R134a or R407C type.

Should you detect a refrigerant leak, please contact a BEKO service technician. Prior to any intervention, the room needs to be ventilated.

When the refrigeration cycle needs to be refilled, please also contact a BEKO service technician. You will find the refrigerant type and amount on the name plate of the dryer.

Properties of the refrigerants used:

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Chemical formula</th>
<th>MIK</th>
<th>GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>R134a - HFC</td>
<td>CH₂FCF₃</td>
<td>1000 ppm</td>
<td>1430</td>
</tr>
<tr>
<td>R407C - HFC</td>
<td>R₃₂/₁₂₅/₁₃₄a (₂₃/₂₅/₅₂) CH₁₂F₂CF₃/CH₂FCF₃</td>
<td>1000 ppm</td>
<td>1773.85</td>
</tr>
</tbody>
</table>

12.5 Dismantling the dryer

When the dryer is dismantled, all parts and operating materials related to the plant need to be disposed of separately.

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant</td>
<td>R407C, R134a, oil</td>
</tr>
<tr>
<td>Roof and supports</td>
<td>Structural steel, epoxy paint coat</td>
</tr>
<tr>
<td>Refrigerating compressor</td>
<td>Steel, copper, aluminium, oil</td>
</tr>
<tr>
<td>Aluminium heat exchanger</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Condenser unit</td>
<td>Aluminium, copper, structural steel</td>
</tr>
<tr>
<td>Pipe</td>
<td>Copper</td>
</tr>
<tr>
<td>Fan</td>
<td>Aluminium, copper, steel</td>
</tr>
<tr>
<td>Valve</td>
<td>Brass, steel</td>
</tr>
<tr>
<td>BEKOMAT condensate drain</td>
<td>PVC, aluminium, steel</td>
</tr>
<tr>
<td>Insulant</td>
<td>Synthetic rubber without CFCs, polystyrene, polyurethane</td>
</tr>
<tr>
<td>Electric cable</td>
<td>Copper, PVC</td>
</tr>
<tr>
<td>Electric parts</td>
<td>PVC, copper, brass</td>
</tr>
</tbody>
</table>

We recommend observing the safety provisions in force for the disposal of each material type. The refrigerant contains lubricating-oil droplets which are released by the compressor. The refrigerant must not be discharged into the environment. It must to be sucked off from the dryer using a suitable device, and then needs to be supplied to a collection point.
Appendices

13 Appendices

13.1 Dryer dimensions

13.1.1 Dryer dimensions DRYPOINT RA 20-70
13.1.2 Dryer dimensions DRYPOINT RA 110-135
13.1.3 Dryer dimensions DRYPOINT RA 190-240
13.1.4 Dryer dimensions DRYPOINT RA 330-370
13.1.5 Dryer dimensions DRYPOINT RA 490-630
13.1.6 Dryer dimensions DRYPOINT RA 750-960
13.1.7 Dryer dimensions DRYPOINT RA 330-370 3 phase
13.1.8 Dryer dimensions DRYPOINT RA 490-630 3 phase
13.1.9 Dryer dimensions DRYPOINT RA 750-960 3 phase
13.2 Exploded diagrams

13.2.1 Components of the exploded diagrams

1. Alu drying module
   1.1 Insulation material
2. Refrigerant pressure switch LPS
3. Safety temperature switch TS
4. Refrigerant pressure switch HPS
5. Refrigerant fan pressure switch PV
6. Compressor
7. Hot-gas bypass valve
8. Condenser (air-cooled)
9. Condenser fan
   9.1 Motor
   9.2 Blade
   9.3 Grid
10. Filter dryer
11. Capillary tube
12. T1 temperature probe (dew point)
13. Condensate drain service valve
17. Air dryer control
18. Condenser (water-cooled)
19. Condenser water-regulating valve (water-cooled)
20. Refrigerant reservoir (water-cooled)
21. Bekomat drain
22. Main switch
... 51. Front panel
52. Back plate
53. Right sidewall
54. Left sidewall
55. Cover
56. Base plate
57. Upper plate
58. Carrier support
59. Support bracket
60. Control panel
61. Electric connecting plug
62. Electric cabinet
65. Condenser filter
66. QE door
81. Adhesive label flow chart
13.2.2 Exploded diagram DRYPOINT RA 20-35
13.2.3 Exploded diagram DRYPOINT RA 50-70
Appendices

13.2.4 Exploded diagram DRYPOINT RA 110-135

---

[Diagram of DRYPOINT RA 110-135 with labeled parts 53, 61, 52, 7, 5, 1, 1.1, 59, 10, 54, 81, 22, 17, 53, 61, 52, 7, 5, 1, 1.1, 59, 10, 54, 81, 22, 17, 21, 9.3, 9.2, 9.1, 56, 12, 11, 6, 8, 51]
13.2.5 Exploded diagram DRYPOINT RA 190-240
13.2.6 Exploded diagram DRYPOINT RA 330-370
13.2.7 Exploded diagram DRYPOINT RA 490-630
13.2.8 Exploded diagram DRYPOINT RA 750-960
13.2.9 Exploded diagram DRYPOINT RA 330-370 Water Cooled
13.2.10 Exploded diagram DRYPOINT RA 490-630 Water Cooled
13.2.11 Exploded diagram DRYPOINT RA 750-960 Water Cooled
13.2.12 Exploded diagram DRYPOINT RA 330-370 3phase
13.2.13 Exploded diagram DRYPOINT RA 490-630 3phase
13.2.14 Exploded diagram DRYPOINT RA 750-960 3phase
13.2.15 Exploded diagram DRYPOINT RA 330-370 3phase Water Cooled
13.2.16 Exploded diagram DRYPOINT RA 490-630 3phase Water Cooled
13.2.17 Exploded diagram DRYPOINT RA 750-960 3phase Water Cooled
13.3 Electric diagrams

13.3.1 Electric diagrams – list of components

**MC** : Compressor
**KT** : Compressor thermal protection
**KR** : Compressor starting relay (if installed)
**CS** : Compressor starting capacitor (if installed)
**CR** : Compressor operating capacitor (if installed)

**MV** : Condenser fan
**CV** : Fan starting capacitor (if installed)

**DMC18** : DMC18 electronic instrument – air dryer control

**BT1** : T1 Temperature probe – dew point

**HPS** : Pressure switch – compressor discharge side (HIGH PRESSURE)
**LPS** : Pressure switch – compressor suction side (LOW PRESSURE)
**PV** : Pressure switch – fan control
**TS** : Safety temperature switch

**ELD** : BEKOMAT drain
**S1** : ON/OFF switch
**QS** : Main switch with locking device
**RC** : Compressor crankcase heater
**BOX** : Electrical connection

**NT1** : Only air-cooled
**NT2** : Check the transformer connections with regard to the supply voltage
**NT3** : Jump, if not installed
**NT4** : Provided and cabled by the customer
**NT5** : Internal control
**NT6** : Time-controlled drain outlet (not used)
**NT7** : Only water-cooled

**BN** = BROWN  OR = ORANGE
**BU** = BLUE  RD = RED
**BK** = BLACK  WH = WHITE
**YG** = YELLOW/GREEN  WH/BK = WHITE/BLACK
1/230V/50Hz+PE (*)
OR
1/230V/60Hz+PE (*)
OR
1/115V/60Hz+PE (*)
FUSE MAX 10 A
RCD Id 0.03A suggested

SUPPLY BY PLUG

UNIT OF EQUIPMENT
[NT5]

[NT4]
(*) See dryer nameplate

Technical modifications are subject to change without notice; errors not excluded.

BEKO TECHNOLOGIES GMBH
http://www.beko.de

http://www.beko.de
13.3.5 Electric diagram DRYPOINT RA 490-960

Technical modifications are subject to change without notice; errors not excluded.

Technical drawing: DRYPOINT RA 20-960

BEKO TECHNOLOGIES GMBH
http://www.beko.de
13.3.6 Electric diagram DRYPOINT RA 330-960 3phase Sheet 1/3
EU-Konformitätserklärung


Produktbezeichnung: DRYPOINT® RA ... AC oder AC TAC oder AC TAC OF sowie DRYPOINT® RA ... WC oder WC TBH oder WC TBH OF
Modelle: 20, 35, 50, 70, 110, 135, 190, 240, 330, 370, 490, 630
Spannungsvarianten: 115, 230, 400, 440, 460 VAC (50 ... 60 Hz)
Max. Betriebsdruck: 20 - 70: 16 bar(g) 110 - 630: 14 bar(g)
Produktbeschreibung und Funktion: Kältetrockner zur Herabsetzung des Drucktaupunkts in Druckluft

Maschinen-Richtlinie 2006/42/EG
Angewandte harmonisierte Normen: EN 14119, EN 14120, EN 12100, EN 13849-1, EN 60204-1
Name des Dokumentationsbevollmächtigten: Jürgen Hüttner, Im Taubental 7, 41468 Neuss, Deutschland

Druckgeräte-Richtlinie 2014/68/EU
Angewandte harmonisierte Normen: ASME VIII Div. 1, EN 378-2, EN 10028-3, EN 12451
Angewandtes Konformitätsbewertungsverfahren: 330 - 630: Modul A
Die Produkte 20-240 fallen in keine Druckgerätekategorie und sind gemäß Artikel 4 Absatz 3 in Übereinstimmung mit der in den Mitgliedstaaten geltenden guten Ingenieurspraxis ausgelegt und werden dieser entsprechend hergestellt.

Niederspannungs-Richtlinie 2014/35/EU
Angewandte harmonisierte Normen: EN 60204-1

EMV-Richtlinie 2014/30/EU
Angewandte harmonisierte Normen: EN 61000-6-2:2018, EN 61000-6-4:2018

ROHS II-Richtlinie 2011/65/EU
Die Vorschriften der Richtlinie 2011/65/EU zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten werden erfüllt.

Der Hersteller trägt die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung.

Unterzeichnet für und im Namen von:

Neuss, 11.05.2020

BEKO TECHNOLOGIES GMBH
i.V. Christian Riedel
Leiter Qualitätsmanagement International
EU Declaration of Conformity

We hereby declare that the products named below comply with the stipulations of the relevant directives and technical standards. This declaration only refers to products in the condition in which they have been placed into circulation. Parts which have not been installed by the manufacturer and/or modifications which have been implemented subsequently remain unconsidered.

Product designation: DRYPOINT® RA … AC or AC TAC or AC TAC OF and DRYPOINT® RA … WC or WC TBH or WC TBH OF

Types:
- 20, 35, 50, 70, 110, 135, 190, 240, 330, 370, 490, 630

Supply voltage versions:
- 115, 230, 400, 440, 460 VAC (50 … 60 Hz)

Max. operating pressure:
- 20 - 70: 16 bar(g)
- 110 - 630: 14 bar(g)

Product description and function: Refrigeration dryer to reduce the pressure dew point in compressed air

Machinery Directive 2006/42/EC
Applied harmonised standards: EN 14119, EN 14120, EN 12100, EN 13849-1, EN 60204-1
Name of the authorised Documentation Representative: Jürgen Hüttner, Im Taubental 7, 41468 Neuss, Germany

Pressure Equipment Directive 2014/68/EU
Applied harmonised standards: ASME VIII Div. 1, EN 378-2, EN 10028-3, EN 12451
Applied conformity assessment procedure: 330 - 630: Module A
The products 20-240 are not classified in any pressure equipment category. In accordance to article 4, section 3, they have been designed and manufactured according to sound engineering practice as applicable in the EU member states.

Low Voltage Directive 2014/35/EU
Applied harmonised standards: EN 60204-1

EMC Directive 2014/30/EU
Applied harmonised standards: EN 61000-6-2:2018, EN 61000-6-4:2018

RoHS II Directive 2011/65/EU
The products meet the requirements laid down in European Directive 2011/65/EU concerning the restriction of the use of certain hazardous substances in electrical and electronic devices.

The manufacturer shall have sole responsibility for issuing this declaration of conformity.

Signed for and on behalf of:

Neuss, 11.05.2020

BEKO TECHNOLOGIES GMBH
i.V. Christian Riedel
Head of International Quality Management

EU-decl_DP_RA_20-RA_630_en_05_2020