High energy saving potentials are created in compressed-air drying. Refrigeration dryers are always designed for the harshest conditions, that means that the benchmark is set for summer operation with high inlet and ambient temperatures.

Only in rare cases are refrigeration dryers applied with constant full load. This results in high energy-saving potential with a dryer with energy-saving control.

The DRYPOINT® RA eco refrigerated dryer series successfully implements and continues the DRYPOINT® RA concept with low pressure loss, optimal heat exchanger design and BEKOMAT®. Based on that, we have implemented two new control concepts for the different installation sizes, which directly adjust the drying performance to the demand and thereby considerably reduce the energy consumption.

Tried and tested system, intelligently controlled: DRYPOINT® RA eco

- Energy efficient and economical
 - Lowest pressure losses due to flow-optimised heat exchanger design
 - Lowest energy input through balanced refrigerant compressor technology
 - No compressed air loss due to effective condensate drainage with BEKOMAT®

- Safe and reliable
 - Efficient condensate separation through integrated demister
 - Optimum protection of the refrigeration cycle

- Easy to handle
 - Clear overview of all operating statuses
 - Continuous monitoring of condensate discharge
 - Unique alarm alerts
 - Timely maintenance and service information

- eco advantages
 - Adjustment of power consumption to amended drying requirements
 - Energy saving with fluctuating volume flow
 - Active contribution to sustainability

Up to 55% cost savings compared to conventional refrigeration dryers in the first 5 years by utilising intelligent control systems
The intelligent cycling system:
DRYPOINT® RA 20-960 eco

- For volume flow rates <1,000 m³/h
- Save energy costs with demand-driven switching for the refrigerant compressor
- Display of percentage energy savings
- Potential-free contact for transmitting alarm messages

Energy efficiency by utilising intelligent cycling system
For volume flow rates of less than 1,000 m³/h, the DRYPOINT® RA eco operates as a cycling dryer in which the refrigerant compressor is switched off according to demand. The intelligent cycling system is executed dependent from the drying requirement and is regulated in such a way that the switching off times will be optimally extended.

Unique technology combination of variable speed and intelligent cycling for optimal efficiency:
DRYPOINT® RA 1300-10800 eco

- For volume flows > 1,000 m³/h
- High energy savings with fluctuating drying requirements due to the unique combination of frequency and intermittent control systems
- Use of low-vibration and energy-efficient scroll compressors
- Intuitive 4.7” touch screen for easy and fast functional check - also for the integrated BEKOMAT®
- Potential-free contact for transmitting alarm messages
- RS485 interface provides the option of external control and monitoring
- Recording of alarm situations/alarm messages

Optimal combination of energy saving and drying performance
For volume flows of more than 1,000 m³/h, the DRYPOINT® RA eco controls the variable speed of the refrigerant compressor with the cycling system. At these high output rates, the fan is also frequency-controlled, resulting in optimised dryer performance combined with lowest possible energy consumption.
Reference conditions according to DIN / ISO 7183

<table>
<thead>
<tr>
<th>Medium</th>
<th>Compressed air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow (m³/h) at +20 °C</td>
<td>1 bar [g]</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>7 bar [g]</td>
</tr>
<tr>
<td>Compressed air inlet temperature</td>
<td>+35 °C</td>
</tr>
<tr>
<td>Ambient air temperature</td>
<td>+25 °C</td>
</tr>
<tr>
<td>Inlet humidity</td>
<td>saturated</td>
</tr>
<tr>
<td>Pressure dew point</td>
<td>+3 °C</td>
</tr>
</tbody>
</table>

Operating conditions

Maximum compressed air inlet temperature	+70 °C
Min. _ max. operating pressure RA 20 eco - RA 70 eco	4 ... 16 bar [g]
Min. _ max. operating pressure RA 110 eco - RA 10800 eco	4 ... 14 bar [g]
Min. _ max. ambient temperature	+1 ... +50 °C
Refrigerant RA 20 eco - RA 135 eco	R134.a
Refrigerant RA 190 eco - RA 13200 eco	R407C

Correction factors

<table>
<thead>
<tr>
<th>Operating pressure (bar)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction factor</td>
<td>0.77</td>
<td>0.86</td>
<td>0.93</td>
<td>1.00</td>
<td>1.05</td>
<td>1.14</td>
<td>1.21</td>
<td>1.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compressed air - Inlet temperature (°C)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA 20 eco - RA 960 eco</td>
<td>1.27</td>
<td>1.21</td>
<td>1.00</td>
<td>0.84</td>
<td>0.70</td>
<td>0.57</td>
<td>0.48</td>
<td>0.42</td>
<td>On request</td>
</tr>
<tr>
<td>RA 1300 eco - RA 10800 eco</td>
<td>1.26</td>
<td>1.20</td>
<td>1.00</td>
<td>0.81</td>
<td>0.68</td>
<td>0.57</td>
<td>0.46</td>
<td>0.38</td>
<td>On request</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient temperature: (°C)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA 20 eco - RA 960 eco</td>
<td>1.00</td>
<td>0.96</td>
<td>0.91</td>
<td>0.85</td>
<td>0.76</td>
<td>0.64</td>
</tr>
<tr>
<td>RA 1300 eco - RA 10800 eco</td>
<td>1.00</td>
<td>0.95</td>
<td>0.93</td>
<td>0.85</td>
<td>0.73</td>
<td>0.58</td>
</tr>
</tbody>
</table>

* other voltage ratings on request
Operating principle of the DRYPOINT® RA eco - refrigeration dryer

In the DRYPOINT® RA eco refrigeration dryer, the air is dried via a counter-flow process with optimised heat exchange (Counter-Flow) along the entire process path, the air flows in a constant downwards aligned direction without diversions.

The generously dimensioned counter-flow heat exchanger unit, which consists of an air-air and an air-refrigerant heat exchanger, among others, cools the compressed air to a temperature of around 3°C.
The size and design of the heat exchangers promote effective cooling while minimising flow resistance.

Warm compressed air saturated with moisture is pre-cooled in the air-air heat exchanger when it enters the refrigeration dryer (1). Consequently, the refrigerating capacity of the refrigerant needed in the downstream air-refrigerant heat exchanger (2) is reduced, making the system more energy-efficient. Gravity supports a very high droplet separation of nearly 99 %. The flow velocity is greatly reduced in the very large condensate collection chamber with subsequent broad return. This reliably avoids any entrainment of droplets which have already been separated (3).

The condensate which is produced is drained from the DRYPOINT® RA eco through the level-controlled condensate drain BEKOMAT®. This prevents any pressurised air losses and can be treated reliably with processing systems such as the oil-water separation system ÖWAMAT® or the emulsion splitting plant BEKOSPLIT® (4). Before leaving the DRYPOINT® RA outlet, the dried, cold compressed air is re-heated in the air/air heat exchanger. This significantly lowers the relative humidity and recovers up to 60 % of the refrigerating capacity used (1).

Do you have questions about the best way of processing your compressed air?

We have the answers! We offer efficient solutions for any type of processing chain. Please contact us with your queries. We would be delighted to tell you more about our condensate treatment, filtration, drying, measuring and process technology, and our comprehensive services.

Visit us at

BEKO TECHNOLOGIES Ltd
Unit 11-12 Moons Park
Burnt Meadow Road
North Moons Moat
Redditch, B98 9PA

Phone +44 (0) 1527 575778
info@beko-technologies.co.uk
www.beko-technologies.co.uk

Subject to technical changes without prior notice. Errors and omissions excepted.