Irrespective of where oil-free compressed pressurised air has to be generated, the advantages of the EVERDRY® HOC series impress consistently. Their main benefit: The heat, which is created during the compression process, is not routed into the aftercooler as in conventional processes but, in this case, utilised for the desorption.

An adsorption dryer which utilises the heat from the compression process to create considerable energy savings is probably the most convincing argument when selecting the perfect product! Systems from the EVERDRY® HOC series function with operating pressure in all process stages. The loads and stresses on the components and drying agents, which are normally caused in conventional systems during pressure changes, do not occur in our systems. This therefore guarantees an extended service life for the system components. Systems with a volume flow of 100,000 m³/h are also feasible when the customer requires them.

The desorption is executed in EVERDRY® HOC-P in partial flow by exploiting the compression heat and the cooling in the partial flow and utilising the cold pressurised air in the volume flow. No pressurised air losses for regeneration (ZERO Purge).

<table>
<thead>
<tr>
<th>Model:</th>
<th>HOC-F</th>
<th>HOC-P</th>
<th>HOC-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure dew point</td>
<td>Down to -40 °C</td>
<td>Down to -40 °C</td>
<td>Down to -70 °C</td>
</tr>
<tr>
<td>Quality Class</td>
<td>-2.-</td>
<td>-2.-</td>
<td>-1.-</td>
</tr>
</tbody>
</table>

Desorption in Partial Flow: the Heat Regenerating Adsorption Dryer EVERDRY® HOC-P

Application Oriented Solutions
- Added value by utilising comprehensive competence
- Total concept instead of just individual components
- Informative and user-friendly control systems
- Easy to maintain

Reliable Process Management
- Safe function monitoring with sensor technology
- High-quality high-temperature galvanising
- Tried and tested, easy to maintain heat exchanger design
- Optional stainless steel version

Energy-optimised Concept
- Utilisation of compression heat
- No pressurised air losses for regeneration
- Beneficial individual valves
- Energy-efficient dew point control system

Durable and Efficient
- The systems function with operating pressure in every process stage
- No loads and stresses on components and the drying agents during pressure changes

Better through Responsibility
Heat Regenerating Adsorption Dryer: In-house Engineering for Individual System Solutions

Profile
› Branch and application-specific requirements (e.g. pressurised air quality, volume flows, types of energy for regeneration air heating)
› Investment and operating costs, individual amortisation time
› Local acceptance provisions
› Climate zones, local assignment conditions, economical parameters

Concept
› Specifying the type of system design
› Following on with: Developing individual solutions

Presentation
› Presenting the solution concept

Implementation
› Implementing the project
› In-house engineering by our experienced, competent team of experts

Commissioning
› Installing the system on site
› Optimum setting up and adjustment for the local circumstances

Continuous exchange of information between the customer and our experts
Support / Consulting / Optimisation

Function Process for EVERDRY® HOC-P

The functional processes for systems of the HOC-P series can be fundamentally divided into three stages:
› Adsorption / Desorption
› Adsorption / Cooling
› Adsorption / Standby

The whole procedure is executed with operating pressure, not only in the adsorption stage but also in the desorption and cooling stages. This therefore enables the resulting compression heat to be utilised for desorption for oil-free compressors for pressurised air.

Adsorption B1 / Desorption B2
The hot compressed air partial flow exiting the compressor flows via the hot air inlet K1 and the valve K10 into the desorbing adsorption vessel B2. The moisture absorbed by the drying agents vaporises and is routed with the desorption air partial flow via the valves K8 and K3 to the cooler. The compressed air is cooled here to the required adsorption inlet temperature. Any resulting precipitation, which occurs during cooling, will be extracted from the compressed air system via the separator. The cooled desorption air partial flow then flows into the cold air partial flow from the compressor downstream of the throttle valve KS1. The partial air flow needed for regeneration can be adjusted manually via the throttle valve KS1.

The volume flow now corresponds to that of the compressor’s volume flow again. The entire compressed air flow is guided through the valve K5 into the adsorption vessel B1 which has been provided for adsorption process. The drying agent bed is flushed through from the bottom to the top during the through flow. The dried compressed air is then routed via the valve K11 and the system outlet to the consumer positions.

The moisture level in the drying agent reduces with the desorption process. Decreasing moisture levels result in an increase of the outlet temperature of the desorption air flow.

The desorption process is concluded when the temperature of the desorption air flow at the adsorber outlet side (in this case B2) has reached the process-technical required temperature.
EVERDRY® HOC-P

- Fully automated for continuous operation
- Desorption in a partial flow using the compression heat
- Cooling via the partial flow of the cold compressed air volume flow
- Hot and cold air from the compressor
- Designed for indoor installation
- Flow-optimised valves to minimise the pressure loss

ENERGYLESS

<table>
<thead>
<tr>
<th>EVERDRY®</th>
<th>HOC-P 0750</th>
<th>HOC-P 1100</th>
<th>HOC-P 1700</th>
<th>HOC-P 2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow rate (m³/h)</td>
<td>800</td>
<td>1300</td>
<td>1700</td>
<td>2300</td>
</tr>
<tr>
<td>Connection PN 16 DIN 2633: J – O</td>
<td>DN 50</td>
<td>DN 80</td>
<td>DN 80</td>
<td>DN 100</td>
</tr>
<tr>
<td>Connection PN 16 DIN 2633: Dj</td>
<td>DN 50</td>
<td>DN 80</td>
<td>DN 80</td>
<td>DN 80</td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (mm)</td>
<td>1430</td>
<td>1600</td>
<td>1800</td>
<td>2050</td>
</tr>
<tr>
<td>B (mm)</td>
<td>2140</td>
<td>2100</td>
<td>2260</td>
<td>2430</td>
</tr>
<tr>
<td>C (mm)</td>
<td>1050</td>
<td>1200</td>
<td>1350</td>
<td>1550</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>1100</td>
<td>1450</td>
<td>1850</td>
<td>2300</td>
</tr>
</tbody>
</table>

JH: hot air inlet
JK: cold air inlet
O: dry air outlet

Notice: the table only shows standardised installation sizes. Systems up to 100,000 m³/h on request
Operating conditions*

<table>
<thead>
<tr>
<th>Medium</th>
<th>Compressed air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow (Vnom)</td>
<td>relative to 20 °C and 1 bar abs.</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>7 bar [g]</td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>35 °C</td>
</tr>
<tr>
<td>Inlet humidity</td>
<td>saturated</td>
</tr>
<tr>
<td>Pressure dew point</td>
<td>up to ~40 °C</td>
</tr>
<tr>
<td>Cooling water</td>
<td>25 °C</td>
</tr>
</tbody>
</table>

Limits of use*

Operating pressure	5 ... 10 bar [g]
Final compression	140 ... 180 °C
Ambient temperature	5 ... 40 °C
Maximum cooling water	32 °C

Electrical connection*

Power supply	3 Ph., 400 V	50 Hz
Connected load	0.15 kW (control panel only)	
Protection class	IP 54, according to IEC 529 (no explosion protection)	
Version	according to VDE / IEC	
Permissible voltage deviation	+/- 10 %	

* Different conditions on request

EVERDRY®

<table>
<thead>
<tr>
<th>Volume flow rate (m³/h)</th>
<th>HOC-P 2900</th>
<th>HOC-P 3400</th>
<th>HOC-P 4200</th>
<th>HOC-P 5000</th>
<th>HOC-P 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection PN 16 DIN 2633: J – O</td>
<td>DN 100</td>
<td>DN 100</td>
<td>DN 150</td>
<td>DN 150</td>
<td>DN 150</td>
</tr>
<tr>
<td>Connection PN 16 DIN 2633: Dj</td>
<td>DN 80</td>
<td>DN 100</td>
<td>DN 100</td>
<td>DN 150</td>
<td>DN 150</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>HOC-P 2900</th>
<th>HOC-P 3400</th>
<th>HOC-P 4200</th>
<th>HOC-P 5000</th>
<th>HOC-P 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (mm)</td>
<td>2050</td>
<td>2400</td>
<td>2500</td>
<td>2800</td>
<td>3000</td>
</tr>
<tr>
<td>B (mm)</td>
<td>2430</td>
<td>2500</td>
<td>2620</td>
<td>2700</td>
<td>2750</td>
</tr>
<tr>
<td>C (mm)</td>
<td>1700</td>
<td>1650</td>
<td>1800</td>
<td>1850</td>
<td>1950</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>2650</td>
<td>2900</td>
<td>3450</td>
<td>3900</td>
<td>4400</td>
</tr>
</tbody>
</table>

JH: hot air inlet
JK: cold air inlet
O: dry air outlet

www.beko-technologies.co.uk
Adsorption B1 / Cooling B2
To prevent temperature and dew point peaks after the switch over, the stored heat in the drying agents will be cooled by the cold compressed air partial flow after the desorption stage. The cold compressed air partial flow exiting the compressor will be routed via the valves K4 and K8 into the heated up drying agent bed. The cold compressed air partial flow absorbs the stored heat in the drying agents during the through flow process. The compressed air partial flow heated up by the desiccant flows to the cooler where it is cooled back down to the adsorption temperature. The cooled cooling air partial flow then flows into the cold air partial flow from the compressor downstream of the throttle valve KS1. The volume flow now corresponds to that of the compressor's volume flow again. The entire compressed air flow is guided through the valve K5 into the adsorption vessel B1 which has been provided for adsorption process. The drying agent bed is flushed through from the bottom to the top during the adsorption process. The moisture is absorbed by the drying agents during the flow through. The dried compressed air is then routed via K11 and the system outlet to the consumer positions.

Adsorption B1 / Standby B2
When the adsorption stage is monitored via a dew point dependent control system (optional) and is then completed, then the duration of the standby stage is dependent on the loading status of the adsorption vessel (in this case B1). The switch over process will be only be initiated when the drying agent break-down capacity has been reached (increase in the pressure condensation point). If the system is operated in the “Time-dependent switch over” mode, then the initiation of the switching over process will be executed when the set cycle time has expired.

Parallel Stage
Before the switching over process is executed for the adsorption vessel (in this case B1 to B2), this will be switched into parallel function by simultaneously opening the inlet valves K5, K6, K11 and K12 accordingly. The pressurised air flows over both adsorption vessels for approx. 5 – 15 minutes (can be set individually).

Switching Over Procedure
The switch over for the adsorption to the regenerating vessel (in this case B2) is executed after completion of the standby stage. The vessel saturated with moisture B1 is now in the desorption stage while the adsorption vessel B2 is responsible for drying the compressed air.
The Heat Regenerating Adsorption Dryer: At home throughout the world.

Do you have questions about the best way of processing your compressed air?

We have the answers! We offer efficient solutions for any type of processing chain. Please contact us with your queries. We would be delighted to tell you more about our condensate treatment, filtration, drying, measuring and process technology, and our comprehensive services.

Visit us at

YouTube

BEKO TECHNOLOGIES Ltd
Unit 11-12 Moons Park
Burnt Meadow Road
North Moons Moat
Redditch, B98 9PA

Phone +44 (0) 1527 575778
info@beko-technologies.co.uk
www.beko-technologies.co.uk

Subject to technical changes without prior notice. Errors and omissions excepted.